单元制造系统中自动化物料搬运系统的设计问题

Woo-sung Kim, Dae-Eun Lim
{"title":"单元制造系统中自动化物料搬运系统的设计问题","authors":"Woo-sung Kim, Dae-Eun Lim","doi":"10.1504/EJIE.2019.10021587","DOIUrl":null,"url":null,"abstract":"We consider the automated material handling system design problem in a cellular manufacturing system (CMS). Simple transportation units including low-cost automated guided vehicles are quite often used in CMSs in South Korea. It is assumed that a transportation unit circulates among a group of cells (stations), and the unit is assumed to collect items from the output buffer of the stations. Collected items are unloaded at a cell which functions as a storage. We are interested in the capacity of the transportation unit, or the number of cells the transportation should visit. Using an embedded Markov chain, we derive the remaining capacity of the transportation unit when it leaves each station. In addition, the probability that the transportation unit is full at its departure epoch is also derived. We provide various numerical results including the effect of volatility of the arrival rates among stations. [Received: 30 December 2017; Revised: 18 October 2018; Accepted: 16 December 2018]","PeriodicalId":314867,"journal":{"name":"European J. of Industrial Engineering","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"On an automated material handling system design problem in cellular manufacturing systems\",\"authors\":\"Woo-sung Kim, Dae-Eun Lim\",\"doi\":\"10.1504/EJIE.2019.10021587\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the automated material handling system design problem in a cellular manufacturing system (CMS). Simple transportation units including low-cost automated guided vehicles are quite often used in CMSs in South Korea. It is assumed that a transportation unit circulates among a group of cells (stations), and the unit is assumed to collect items from the output buffer of the stations. Collected items are unloaded at a cell which functions as a storage. We are interested in the capacity of the transportation unit, or the number of cells the transportation should visit. Using an embedded Markov chain, we derive the remaining capacity of the transportation unit when it leaves each station. In addition, the probability that the transportation unit is full at its departure epoch is also derived. We provide various numerical results including the effect of volatility of the arrival rates among stations. [Received: 30 December 2017; Revised: 18 October 2018; Accepted: 16 December 2018]\",\"PeriodicalId\":314867,\"journal\":{\"name\":\"European J. of Industrial Engineering\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European J. of Industrial Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/EJIE.2019.10021587\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European J. of Industrial Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/EJIE.2019.10021587","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

研究了元胞制造系统(CMS)中自动化物料搬运系统的设计问题。在韩国,cms中经常使用包括低成本自动导引车在内的简单运输单元。假设一个运输单元在一组单元(站)之间循环,并假设该单元从站的输出缓冲区中收集物品。收集到的项目在一个单元中卸载,该单元的功能是存储。我们感兴趣的是运输单元的容量,或者运输应该访问的细胞数量。利用嵌入马尔可夫链,推导出了运输单元离开各站点时的剩余运力。此外,还导出了运输单元在出发时刻满员的概率。我们提供了各种数值结果,包括站间到达率波动的影响。[收稿日期:2017年12月30日;修订日期:2018年10月18日;录用日期:2018年12月16日]
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On an automated material handling system design problem in cellular manufacturing systems
We consider the automated material handling system design problem in a cellular manufacturing system (CMS). Simple transportation units including low-cost automated guided vehicles are quite often used in CMSs in South Korea. It is assumed that a transportation unit circulates among a group of cells (stations), and the unit is assumed to collect items from the output buffer of the stations. Collected items are unloaded at a cell which functions as a storage. We are interested in the capacity of the transportation unit, or the number of cells the transportation should visit. Using an embedded Markov chain, we derive the remaining capacity of the transportation unit when it leaves each station. In addition, the probability that the transportation unit is full at its departure epoch is also derived. We provide various numerical results including the effect of volatility of the arrival rates among stations. [Received: 30 December 2017; Revised: 18 October 2018; Accepted: 16 December 2018]
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信