基于SpO2的深度学习睡眠呼吸暂停检测

Sheikh Shanawaz Mostafa, Fábio Mendonça, F. Morgado‐Dias, A. Ravelo-García
{"title":"基于SpO2的深度学习睡眠呼吸暂停检测","authors":"Sheikh Shanawaz Mostafa, Fábio Mendonça, F. Morgado‐Dias, A. Ravelo-García","doi":"10.1109/INES.2017.8118534","DOIUrl":null,"url":null,"abstract":"In a classical classification process, automatic sleep apnea detection involves creating and selecting the features, using prior knowledge, and apply them to a classifier. A different approach is applied in this paper, where a Deep Belief Network is used for feature extraction, without using domain-specific knowledge, and then the same network is used for classification of sleep apnea. The Deep Belief Network was created by stacking Restricted Boltzmann Machines. The first two layers are autoencoder type and the last layer is of soft-max type. The initial weights are calculated using unsupervised learning and, at the end, a supervised fine-tuning of the weights is performed. Two public databases, one with 8 subjects and other with 25 subjects, are tested using tenfold cross validation. The optimum number of hidden neurons of this problem is found using a search technique. The accuracy achieved from UCD database is 85.26% and Apnea-ECG database is 97.64%.","PeriodicalId":344933,"journal":{"name":"2017 IEEE 21st International Conference on Intelligent Engineering Systems (INES)","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"47","resultStr":"{\"title\":\"SpO2 based sleep apnea detection using deep learning\",\"authors\":\"Sheikh Shanawaz Mostafa, Fábio Mendonça, F. Morgado‐Dias, A. Ravelo-García\",\"doi\":\"10.1109/INES.2017.8118534\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In a classical classification process, automatic sleep apnea detection involves creating and selecting the features, using prior knowledge, and apply them to a classifier. A different approach is applied in this paper, where a Deep Belief Network is used for feature extraction, without using domain-specific knowledge, and then the same network is used for classification of sleep apnea. The Deep Belief Network was created by stacking Restricted Boltzmann Machines. The first two layers are autoencoder type and the last layer is of soft-max type. The initial weights are calculated using unsupervised learning and, at the end, a supervised fine-tuning of the weights is performed. Two public databases, one with 8 subjects and other with 25 subjects, are tested using tenfold cross validation. The optimum number of hidden neurons of this problem is found using a search technique. The accuracy achieved from UCD database is 85.26% and Apnea-ECG database is 97.64%.\",\"PeriodicalId\":344933,\"journal\":{\"name\":\"2017 IEEE 21st International Conference on Intelligent Engineering Systems (INES)\",\"volume\":\"40 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"47\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE 21st International Conference on Intelligent Engineering Systems (INES)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/INES.2017.8118534\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 21st International Conference on Intelligent Engineering Systems (INES)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INES.2017.8118534","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 47

摘要

在经典的分类过程中,睡眠呼吸暂停自动检测包括创建和选择特征,使用先验知识,并将其应用于分类器。本文采用了一种不同的方法,在不使用特定领域知识的情况下,使用深度信念网络进行特征提取,然后使用相同的网络进行睡眠呼吸暂停分类。深度信念网络是通过堆叠受限玻尔兹曼机创建的。前两层是自动编码器类型,最后一层是软最大类型。使用无监督学习计算初始权重,最后执行有监督的权重微调。两个公共数据库,一个有8个受试者,另一个有25个受试者,使用10倍交叉验证进行测试。利用搜索技术找到该问题的最优隐藏神经元数。UCD数据库的准确率为85.26%,Apnea-ECG数据库的准确率为97.64%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
SpO2 based sleep apnea detection using deep learning
In a classical classification process, automatic sleep apnea detection involves creating and selecting the features, using prior knowledge, and apply them to a classifier. A different approach is applied in this paper, where a Deep Belief Network is used for feature extraction, without using domain-specific knowledge, and then the same network is used for classification of sleep apnea. The Deep Belief Network was created by stacking Restricted Boltzmann Machines. The first two layers are autoencoder type and the last layer is of soft-max type. The initial weights are calculated using unsupervised learning and, at the end, a supervised fine-tuning of the weights is performed. Two public databases, one with 8 subjects and other with 25 subjects, are tested using tenfold cross validation. The optimum number of hidden neurons of this problem is found using a search technique. The accuracy achieved from UCD database is 85.26% and Apnea-ECG database is 97.64%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信