{"title":"用于阻抗传感的低功率多频电流模式锁相放大器","authors":"Jinlong Gu, N. Mcfarlane","doi":"10.1109/I2MTC.2015.7151317","DOIUrl":null,"url":null,"abstract":"We show the design of a low-power, multi-frequency on-chip current-mode lock-in amplifier for biomedical impedance sensing. This lock-in amplifier obtains the phase and magnitude of the input signals in analog domain and therefore does not require a digital signal processing module. It is composed of translinear bandpass filters, 4-quadrant subthreshold multipliers, translinear low pass filters, translinear pythagorators and dividers. Monte Carlo results show that 80% of the devices will perform according to specifications with a power consumption of 207.7 μW. Experimental results of the bandpass modules show the impedance spectrum can be determined at the 100 Hz, 1 kHz, 10 kHz and 100 kHz frequency points.","PeriodicalId":424006,"journal":{"name":"2015 IEEE International Instrumentation and Measurement Technology Conference (I2MTC) Proceedings","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"A low power multi-frequency current mode lock-in amplifier for impedance sensing\",\"authors\":\"Jinlong Gu, N. Mcfarlane\",\"doi\":\"10.1109/I2MTC.2015.7151317\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We show the design of a low-power, multi-frequency on-chip current-mode lock-in amplifier for biomedical impedance sensing. This lock-in amplifier obtains the phase and magnitude of the input signals in analog domain and therefore does not require a digital signal processing module. It is composed of translinear bandpass filters, 4-quadrant subthreshold multipliers, translinear low pass filters, translinear pythagorators and dividers. Monte Carlo results show that 80% of the devices will perform according to specifications with a power consumption of 207.7 μW. Experimental results of the bandpass modules show the impedance spectrum can be determined at the 100 Hz, 1 kHz, 10 kHz and 100 kHz frequency points.\",\"PeriodicalId\":424006,\"journal\":{\"name\":\"2015 IEEE International Instrumentation and Measurement Technology Conference (I2MTC) Proceedings\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-05-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE International Instrumentation and Measurement Technology Conference (I2MTC) Proceedings\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/I2MTC.2015.7151317\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Instrumentation and Measurement Technology Conference (I2MTC) Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/I2MTC.2015.7151317","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A low power multi-frequency current mode lock-in amplifier for impedance sensing
We show the design of a low-power, multi-frequency on-chip current-mode lock-in amplifier for biomedical impedance sensing. This lock-in amplifier obtains the phase and magnitude of the input signals in analog domain and therefore does not require a digital signal processing module. It is composed of translinear bandpass filters, 4-quadrant subthreshold multipliers, translinear low pass filters, translinear pythagorators and dividers. Monte Carlo results show that 80% of the devices will perform according to specifications with a power consumption of 207.7 μW. Experimental results of the bandpass modules show the impedance spectrum can be determined at the 100 Hz, 1 kHz, 10 kHz and 100 kHz frequency points.