一种基于细分的光谱特征旋转不变视网膜识别算法

Mahrokh Khakzar, H. Pourghassem
{"title":"一种基于细分的光谱特征旋转不变视网膜识别算法","authors":"Mahrokh Khakzar, H. Pourghassem","doi":"10.1109/ICBME.2014.7043941","DOIUrl":null,"url":null,"abstract":"In this paper, a rotation-invariant retina identification algorithm based on tessellation of frequency spectrum is developed. In this algorithm, the proposed tessellation scheme provides rotation invariant, multi resolution and optimized features with low computational for our retina identification algorithm. The proposed algorithm is structured in two parts namely feature extraction and decision making. First step is forming feature vectors by applying proposed tessellation scheme on frequency spectrum of vessel skeleton of retinal image. Then, a specific scenario is defined based on energy spectrum of vessels to identify each individual. Finally, Euclidean distance criterion is used to evaluate the accuracy of proposed tessellation scheme. Experimental results show that the proposed algorithm obtains the accuracy rate of 99.29 % in presence of rotation and multi resolution samples.","PeriodicalId":434822,"journal":{"name":"2014 21th Iranian Conference on Biomedical Engineering (ICBME)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"A rotation invariant retina identification algorithm using tessellation-based spectral feature\",\"authors\":\"Mahrokh Khakzar, H. Pourghassem\",\"doi\":\"10.1109/ICBME.2014.7043941\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a rotation-invariant retina identification algorithm based on tessellation of frequency spectrum is developed. In this algorithm, the proposed tessellation scheme provides rotation invariant, multi resolution and optimized features with low computational for our retina identification algorithm. The proposed algorithm is structured in two parts namely feature extraction and decision making. First step is forming feature vectors by applying proposed tessellation scheme on frequency spectrum of vessel skeleton of retinal image. Then, a specific scenario is defined based on energy spectrum of vessels to identify each individual. Finally, Euclidean distance criterion is used to evaluate the accuracy of proposed tessellation scheme. Experimental results show that the proposed algorithm obtains the accuracy rate of 99.29 % in presence of rotation and multi resolution samples.\",\"PeriodicalId\":434822,\"journal\":{\"name\":\"2014 21th Iranian Conference on Biomedical Engineering (ICBME)\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 21th Iranian Conference on Biomedical Engineering (ICBME)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICBME.2014.7043941\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 21th Iranian Conference on Biomedical Engineering (ICBME)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICBME.2014.7043941","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

本文提出了一种基于频谱细分的旋转不变视网膜识别算法。该算法为视网膜识别算法提供了旋转不变性、多分辨率和低计算量的优化特征。该算法分为特征提取和决策两部分。首先对视网膜图像血管骨架的频谱进行细分,形成特征向量。然后,根据船舶的能量谱定义一个特定的场景,以识别每个个体。最后,利用欧几里得距离准则对所提出的镶嵌方案的精度进行了评价。实验结果表明,该算法在存在旋转和多分辨率样本的情况下,准确率达到99.29%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A rotation invariant retina identification algorithm using tessellation-based spectral feature
In this paper, a rotation-invariant retina identification algorithm based on tessellation of frequency spectrum is developed. In this algorithm, the proposed tessellation scheme provides rotation invariant, multi resolution and optimized features with low computational for our retina identification algorithm. The proposed algorithm is structured in two parts namely feature extraction and decision making. First step is forming feature vectors by applying proposed tessellation scheme on frequency spectrum of vessel skeleton of retinal image. Then, a specific scenario is defined based on energy spectrum of vessels to identify each individual. Finally, Euclidean distance criterion is used to evaluate the accuracy of proposed tessellation scheme. Experimental results show that the proposed algorithm obtains the accuracy rate of 99.29 % in presence of rotation and multi resolution samples.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信