不同收益分布下单一风险资产金融投资凯利准则的计算方法

N. Yoshida
{"title":"不同收益分布下单一风险资产金融投资凯利准则的计算方法","authors":"N. Yoshida","doi":"10.7763/IJMO.2021.V11.775","DOIUrl":null,"url":null,"abstract":"In this paper, the expectation of the reciprocal of first-degree polynomials of non-negative valued random variables is calculated. This is motivated to compute the Kelly criterion, which is the optimal solution of the maximization of the expected logarithm of the investment return. As soon as the expectation of the reciprocal of first-degree polynomials of asset returns is calculated, which is our main interest, the Kelly criterion can be obtained by using the ordinary optimization technique or applying the appropriate algorithm.","PeriodicalId":134487,"journal":{"name":"International Journal of Modeling and Optimization","volume":"292 2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On Calculating Method of the Kelly Criterion for Financial Investment in Single Risky Asset with Various Distributions of Returns\",\"authors\":\"N. Yoshida\",\"doi\":\"10.7763/IJMO.2021.V11.775\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, the expectation of the reciprocal of first-degree polynomials of non-negative valued random variables is calculated. This is motivated to compute the Kelly criterion, which is the optimal solution of the maximization of the expected logarithm of the investment return. As soon as the expectation of the reciprocal of first-degree polynomials of asset returns is calculated, which is our main interest, the Kelly criterion can be obtained by using the ordinary optimization technique or applying the appropriate algorithm.\",\"PeriodicalId\":134487,\"journal\":{\"name\":\"International Journal of Modeling and Optimization\",\"volume\":\"292 2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Modeling and Optimization\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7763/IJMO.2021.V11.775\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Modeling and Optimization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7763/IJMO.2021.V11.775","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文计算了非负值随机变量的一阶多项式倒数的期望。这激发了计算凯利准则的动机,凯利准则是投资回报期望对数最大化的最优解。一旦计算出资产收益的一阶多项式倒数的期望(这是我们的主要兴趣),就可以使用普通的优化技术或应用适当的算法来获得凯利准则。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On Calculating Method of the Kelly Criterion for Financial Investment in Single Risky Asset with Various Distributions of Returns
In this paper, the expectation of the reciprocal of first-degree polynomials of non-negative valued random variables is calculated. This is motivated to compute the Kelly criterion, which is the optimal solution of the maximization of the expected logarithm of the investment return. As soon as the expectation of the reciprocal of first-degree polynomials of asset returns is calculated, which is our main interest, the Kelly criterion can be obtained by using the ordinary optimization technique or applying the appropriate algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信