薄带中的三维双曲Navier-Stokes方程:Gevrey空间中的全局适定性和流体静力极限

Wei-Xi Li, Tong Yang
{"title":"薄带中的三维双曲Navier-Stokes方程:Gevrey空间中的全局适定性和流体静力极限","authors":"Wei-Xi Li, Tong Yang","doi":"10.4208/cmaa.2022-0007","DOIUrl":null,"url":null,"abstract":"We consider the hyperbolic version of three-dimensional anisotropic Naver-Stokes equations in a thin strip and its hydrostatic limit that is a hyperbolic Prandtl type equations. We prove the global-in-time existence and uniqueness for the two systems and the hydrostatic limit when the initial data belong to the Gevrey function space with index 2. The proof is based on a direct energy method by observing the damping e ff ect in the systems.","PeriodicalId":371957,"journal":{"name":"Communications in Mathematical Analysis and Applications","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"3D Hyperbolic Navier-Stokes Equations in a Thin Strip: Global Well-Posedness and Hydrostatic Limit in Gevrey Space\",\"authors\":\"Wei-Xi Li, Tong Yang\",\"doi\":\"10.4208/cmaa.2022-0007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the hyperbolic version of three-dimensional anisotropic Naver-Stokes equations in a thin strip and its hydrostatic limit that is a hyperbolic Prandtl type equations. We prove the global-in-time existence and uniqueness for the two systems and the hydrostatic limit when the initial data belong to the Gevrey function space with index 2. The proof is based on a direct energy method by observing the damping e ff ect in the systems.\",\"PeriodicalId\":371957,\"journal\":{\"name\":\"Communications in Mathematical Analysis and Applications\",\"volume\":\"52 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-04-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Mathematical Analysis and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4208/cmaa.2022-0007\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Mathematical Analysis and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4208/cmaa.2022-0007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

我们考虑了三维各向异性Naver-Stokes方程在薄带上的双曲版本及其流体静力极限,即双曲Prandtl型方程。我们证明了这两个系统在时间上的全局存在唯一性,以及当初始数据属于索引为2的Gevrey函数空间时的静力极限。该证明是基于直接能量法,通过观察系统中的阻尼效应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
3D Hyperbolic Navier-Stokes Equations in a Thin Strip: Global Well-Posedness and Hydrostatic Limit in Gevrey Space
We consider the hyperbolic version of three-dimensional anisotropic Naver-Stokes equations in a thin strip and its hydrostatic limit that is a hyperbolic Prandtl type equations. We prove the global-in-time existence and uniqueness for the two systems and the hydrostatic limit when the initial data belong to the Gevrey function space with index 2. The proof is based on a direct energy method by observing the damping e ff ect in the systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信