可控拉格朗日粒子跟踪的自适应控制律

Sungjin Cho, Fumin Zhang
{"title":"可控拉格朗日粒子跟踪的自适应控制律","authors":"Sungjin Cho, Fumin Zhang","doi":"10.1145/2999504.3001077","DOIUrl":null,"url":null,"abstract":"Controlled Lagrangian particle tracking (CLPT) is a method that evaluates the accuracy of ocean models employed for the navigation of autonomous underwater vehicles (AUVs). The accuracy of ocean models can be represented by the discrepancy between the predicted and true trajectories of AUVs, called controlled Lagrangian prediction error (CLPE). To reduce CLPE, we develop an adaptive control law that enables AUVs to follow the predicted trajectory in the true flow field. Because CLPE is exponentially increasing and navigation performance is significantly degraded when previous controllers are used, we propose the adaptive control law that makes CLPE converges to zero. Although true flows are unknown, the proposed control law identifies the true flow field so that AUVs follows the predicted trajectory. We prove that CLPE is ultimately bounded under bounded disturbances. The proposed control law is verified by simulation results.","PeriodicalId":378624,"journal":{"name":"Proceedings of the 11th International Conference on Underwater Networks & Systems","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"An adaptive control law for controlled Lagrangian particle tracking\",\"authors\":\"Sungjin Cho, Fumin Zhang\",\"doi\":\"10.1145/2999504.3001077\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Controlled Lagrangian particle tracking (CLPT) is a method that evaluates the accuracy of ocean models employed for the navigation of autonomous underwater vehicles (AUVs). The accuracy of ocean models can be represented by the discrepancy between the predicted and true trajectories of AUVs, called controlled Lagrangian prediction error (CLPE). To reduce CLPE, we develop an adaptive control law that enables AUVs to follow the predicted trajectory in the true flow field. Because CLPE is exponentially increasing and navigation performance is significantly degraded when previous controllers are used, we propose the adaptive control law that makes CLPE converges to zero. Although true flows are unknown, the proposed control law identifies the true flow field so that AUVs follows the predicted trajectory. We prove that CLPE is ultimately bounded under bounded disturbances. The proposed control law is verified by simulation results.\",\"PeriodicalId\":378624,\"journal\":{\"name\":\"Proceedings of the 11th International Conference on Underwater Networks & Systems\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 11th International Conference on Underwater Networks & Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2999504.3001077\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 11th International Conference on Underwater Networks & Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2999504.3001077","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

可控拉格朗日粒子跟踪(CLPT)是一种评估用于自主水下航行器(auv)导航的海洋模型精度的方法。海洋模型的精度可以用auv的预测轨迹与真实轨迹之间的差异来表示,称为可控拉格朗日预测误差(CLPE)。为了降低CLPE,我们开发了一种自适应控制律,使auv能够在真实流场中遵循预测轨迹。由于使用原有控制器时,CLPE呈指数增长,导航性能明显下降,提出了使CLPE收敛于零的自适应控制律。虽然真实流量是未知的,但所提出的控制律可以识别真实的流场,使auv遵循预测的轨迹。证明了CLPE在有界扰动下是最终有界的。仿真结果验证了所提控制律的正确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An adaptive control law for controlled Lagrangian particle tracking
Controlled Lagrangian particle tracking (CLPT) is a method that evaluates the accuracy of ocean models employed for the navigation of autonomous underwater vehicles (AUVs). The accuracy of ocean models can be represented by the discrepancy between the predicted and true trajectories of AUVs, called controlled Lagrangian prediction error (CLPE). To reduce CLPE, we develop an adaptive control law that enables AUVs to follow the predicted trajectory in the true flow field. Because CLPE is exponentially increasing and navigation performance is significantly degraded when previous controllers are used, we propose the adaptive control law that makes CLPE converges to zero. Although true flows are unknown, the proposed control law identifies the true flow field so that AUVs follows the predicted trajectory. We prove that CLPE is ultimately bounded under bounded disturbances. The proposed control law is verified by simulation results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信