递归神经网络的学习能力:一个密码学的视角

Shivin Srivastava, Ashutosh Bhatia
{"title":"递归神经网络的学习能力:一个密码学的视角","authors":"Shivin Srivastava, Ashutosh Bhatia","doi":"10.1109/ICBK.2018.00029","DOIUrl":null,"url":null,"abstract":"It has been proven that Recurrent Neural Networks (RNNs) are Turing Complete, i.e. for any given computable function there exists a finite RNN to compute it. Consequently, researchers have trained Recurrent Neural Networks to learn simple functions like sorting, addition, compression and more recently, even classical cryptographic ciphers such as the Enigma. In this paper, we try to identify the characteristics of functions that make them easy or difficult for the RNN to learn. We look at functions from a cryptographic point of view by studying the ways in which the output depends on the input. We use cryptographic parameters (confusion and diffusion) for determining the strength of a cipher and quantify this dependence to show that a strong correlation exists between the learning capability of an RNN and the function's cryptographic parameters.","PeriodicalId":144958,"journal":{"name":"2018 IEEE International Conference on Big Knowledge (ICBK)","volume":"160 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"On the Learning Capabilities of Recurrent Neural Networks: A Cryptographic Perspective\",\"authors\":\"Shivin Srivastava, Ashutosh Bhatia\",\"doi\":\"10.1109/ICBK.2018.00029\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It has been proven that Recurrent Neural Networks (RNNs) are Turing Complete, i.e. for any given computable function there exists a finite RNN to compute it. Consequently, researchers have trained Recurrent Neural Networks to learn simple functions like sorting, addition, compression and more recently, even classical cryptographic ciphers such as the Enigma. In this paper, we try to identify the characteristics of functions that make them easy or difficult for the RNN to learn. We look at functions from a cryptographic point of view by studying the ways in which the output depends on the input. We use cryptographic parameters (confusion and diffusion) for determining the strength of a cipher and quantify this dependence to show that a strong correlation exists between the learning capability of an RNN and the function's cryptographic parameters.\",\"PeriodicalId\":144958,\"journal\":{\"name\":\"2018 IEEE International Conference on Big Knowledge (ICBK)\",\"volume\":\"160 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE International Conference on Big Knowledge (ICBK)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICBK.2018.00029\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on Big Knowledge (ICBK)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICBK.2018.00029","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

递归神经网络(RNN)是图灵完备的,即对于任何给定的可计算函数,存在一个有限的RNN来计算它。因此,研究人员已经训练了循环神经网络来学习简单的功能,如排序、加法、压缩,最近甚至是经典的密码,如Enigma。在本文中,我们试图识别函数的特征,使它们容易或困难的RNN学习。我们通过研究输出依赖于输入的方式,从密码学的角度来看待函数。我们使用密码参数(混淆和扩散)来确定密码的强度,并量化这种依赖性,以表明RNN的学习能力与函数的密码参数之间存在很强的相关性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the Learning Capabilities of Recurrent Neural Networks: A Cryptographic Perspective
It has been proven that Recurrent Neural Networks (RNNs) are Turing Complete, i.e. for any given computable function there exists a finite RNN to compute it. Consequently, researchers have trained Recurrent Neural Networks to learn simple functions like sorting, addition, compression and more recently, even classical cryptographic ciphers such as the Enigma. In this paper, we try to identify the characteristics of functions that make them easy or difficult for the RNN to learn. We look at functions from a cryptographic point of view by studying the ways in which the output depends on the input. We use cryptographic parameters (confusion and diffusion) for determining the strength of a cipher and quantify this dependence to show that a strong correlation exists between the learning capability of an RNN and the function's cryptographic parameters.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信