使用同态加密评估基于云的运行状况监测

Övünç Kocabas, T. Soyata, J. Couderc, M. Aktas, J. Xia, Michael C. Huang
{"title":"使用同态加密评估基于云的运行状况监测","authors":"Övünç Kocabas, T. Soyata, J. Couderc, M. Aktas, J. Xia, Michael C. Huang","doi":"10.1109/ICCD.2013.6657078","DOIUrl":null,"url":null,"abstract":"Current financial and regulatory pressure has provided strong incentives to institute better disease prevention, improved patient monitoring, and push U.S. healthcare into the digital era. This transition requires that data privacy be ensured for digital health data in three distinct phases: I. acquisition, II. storage, and III. computation. Each phase comes with unique challenges in terms of proper implementation and privacy. While the privacy of the data can be ensured with existing AES encryption techniques in phases I (acquisition) and II (storage), to enable healthcare organizations to take advantage of cloud computing using resources such as Amazon Web Services, phase III (computation) must also enable the privacy of the data. Currently, there exists no system to enable direct computation in the cloud while assuring data privacy. Fully Homomorphic Encryption (FHE) is an emerging cryptographic technique to permit computation on encrypted data directly in the cloud without the need to bring the data back to the computational node. However, this promising technique comes with significant performance- and storage-related challenges. While it will take more years before true FHE is mainstream, we provide a feasibility study for its application to a simple longterm patient ECG-data monitoring system.","PeriodicalId":398811,"journal":{"name":"2013 IEEE 31st International Conference on Computer Design (ICCD)","volume":"85 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"61","resultStr":"{\"title\":\"Assessment of cloud-based health monitoring using Homomorphic Encryption\",\"authors\":\"Övünç Kocabas, T. Soyata, J. Couderc, M. Aktas, J. Xia, Michael C. Huang\",\"doi\":\"10.1109/ICCD.2013.6657078\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Current financial and regulatory pressure has provided strong incentives to institute better disease prevention, improved patient monitoring, and push U.S. healthcare into the digital era. This transition requires that data privacy be ensured for digital health data in three distinct phases: I. acquisition, II. storage, and III. computation. Each phase comes with unique challenges in terms of proper implementation and privacy. While the privacy of the data can be ensured with existing AES encryption techniques in phases I (acquisition) and II (storage), to enable healthcare organizations to take advantage of cloud computing using resources such as Amazon Web Services, phase III (computation) must also enable the privacy of the data. Currently, there exists no system to enable direct computation in the cloud while assuring data privacy. Fully Homomorphic Encryption (FHE) is an emerging cryptographic technique to permit computation on encrypted data directly in the cloud without the need to bring the data back to the computational node. However, this promising technique comes with significant performance- and storage-related challenges. While it will take more years before true FHE is mainstream, we provide a feasibility study for its application to a simple longterm patient ECG-data monitoring system.\",\"PeriodicalId\":398811,\"journal\":{\"name\":\"2013 IEEE 31st International Conference on Computer Design (ICCD)\",\"volume\":\"85 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"61\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE 31st International Conference on Computer Design (ICCD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCD.2013.6657078\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE 31st International Conference on Computer Design (ICCD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCD.2013.6657078","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 61

摘要

当前的金融和监管压力为制定更好的疾病预防、改善患者监测和推动美国医疗保健进入数字时代提供了强大的动力。这一转变要求在三个不同的阶段确保数字健康数据的数据隐私:1 .获取;三、存储;计算。每个阶段在正确实现和隐私方面都面临着独特的挑战。虽然在第一阶段(获取)和第二阶段(存储)可以使用现有的AES加密技术确保数据的隐私,但要使医疗保健组织能够利用Amazon Web Services等资源利用云计算,第三阶段(计算)还必须启用数据的隐私。目前,还没有一种系统能够在保证数据隐私的情况下在云中实现直接计算。完全同态加密(FHE)是一种新兴的加密技术,它允许直接在云中对加密数据进行计算,而无需将数据带回计算节点。然而,这种有前途的技术带来了与性能和存储相关的重大挑战。虽然真正的FHE成为主流还需要几年的时间,但我们为其应用于简单的长期患者心电图数据监测系统提供了可行性研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Assessment of cloud-based health monitoring using Homomorphic Encryption
Current financial and regulatory pressure has provided strong incentives to institute better disease prevention, improved patient monitoring, and push U.S. healthcare into the digital era. This transition requires that data privacy be ensured for digital health data in three distinct phases: I. acquisition, II. storage, and III. computation. Each phase comes with unique challenges in terms of proper implementation and privacy. While the privacy of the data can be ensured with existing AES encryption techniques in phases I (acquisition) and II (storage), to enable healthcare organizations to take advantage of cloud computing using resources such as Amazon Web Services, phase III (computation) must also enable the privacy of the data. Currently, there exists no system to enable direct computation in the cloud while assuring data privacy. Fully Homomorphic Encryption (FHE) is an emerging cryptographic technique to permit computation on encrypted data directly in the cloud without the need to bring the data back to the computational node. However, this promising technique comes with significant performance- and storage-related challenges. While it will take more years before true FHE is mainstream, we provide a feasibility study for its application to a simple longterm patient ECG-data monitoring system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信