SAM:用于云备份的语义感知的多层源重复数据删除框架

Yujuan Tan, Hong Jiang, D. Feng, Lei Tian, Zhichao Yan, Guohui Zhou
{"title":"SAM:用于云备份的语义感知的多层源重复数据删除框架","authors":"Yujuan Tan, Hong Jiang, D. Feng, Lei Tian, Zhichao Yan, Guohui Zhou","doi":"10.1109/ICPP.2010.69","DOIUrl":null,"url":null,"abstract":"Existing de-duplication solutions in cloud backup environment either obtain high compression ratios at the cost of heavy de-duplication overheads in terms of increased latency and reduced throughput, or maintain small de-duplication overheads at the cost of low compression ratios causing high data transmission costs, which results in a large backup window. In this paper, we present SAM, a Semantic-Aware Multitiered source de-duplication framework that first combines the global file-level de-duplication and local chunk-level deduplication, and further exploits file semantics in each stage in the framework, to obtain an optimal tradeoff between the deduplication efficiency and de-duplication overhead and finally achieve a shorter backup window than existing approaches. Our experimental results with real world datasets show that SAM not only has a higher de-duplication efficiency/overhead ratio than existing solutions, but also shortens the backup window by an average of 38.7%.","PeriodicalId":180554,"journal":{"name":"2010 39th International Conference on Parallel Processing","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"87","resultStr":"{\"title\":\"SAM: A Semantic-Aware Multi-tiered Source De-duplication Framework for Cloud Backup\",\"authors\":\"Yujuan Tan, Hong Jiang, D. Feng, Lei Tian, Zhichao Yan, Guohui Zhou\",\"doi\":\"10.1109/ICPP.2010.69\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Existing de-duplication solutions in cloud backup environment either obtain high compression ratios at the cost of heavy de-duplication overheads in terms of increased latency and reduced throughput, or maintain small de-duplication overheads at the cost of low compression ratios causing high data transmission costs, which results in a large backup window. In this paper, we present SAM, a Semantic-Aware Multitiered source de-duplication framework that first combines the global file-level de-duplication and local chunk-level deduplication, and further exploits file semantics in each stage in the framework, to obtain an optimal tradeoff between the deduplication efficiency and de-duplication overhead and finally achieve a shorter backup window than existing approaches. Our experimental results with real world datasets show that SAM not only has a higher de-duplication efficiency/overhead ratio than existing solutions, but also shortens the backup window by an average of 38.7%.\",\"PeriodicalId\":180554,\"journal\":{\"name\":\"2010 39th International Conference on Parallel Processing\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"87\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 39th International Conference on Parallel Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICPP.2010.69\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 39th International Conference on Parallel Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPP.2010.69","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 87

摘要

在云备份环境下,现有的重复数据删除解决方案要么以增加延迟和降低吞吐量的大量重复数据删除开销为代价获得高压缩比,要么以低压缩比为代价维持较小的重复数据删除开销,导致数据传输成本高,从而导致备份窗口过大。本文提出了基于语义感知的多层源重复数据删除框架SAM,该框架首先结合了全局文件级重复数据删除和本地块级重复数据删除,并在框架的每个阶段进一步利用文件语义,以获得重复数据删除效率和重复数据删除开销之间的最佳权衡,最终实现比现有方法更短的备份窗口。我们在真实数据集上的实验结果表明,SAM不仅具有比现有解决方案更高的重复数据删除效率/开销比,而且平均缩短了38.7%的备份窗口。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
SAM: A Semantic-Aware Multi-tiered Source De-duplication Framework for Cloud Backup
Existing de-duplication solutions in cloud backup environment either obtain high compression ratios at the cost of heavy de-duplication overheads in terms of increased latency and reduced throughput, or maintain small de-duplication overheads at the cost of low compression ratios causing high data transmission costs, which results in a large backup window. In this paper, we present SAM, a Semantic-Aware Multitiered source de-duplication framework that first combines the global file-level de-duplication and local chunk-level deduplication, and further exploits file semantics in each stage in the framework, to obtain an optimal tradeoff between the deduplication efficiency and de-duplication overhead and finally achieve a shorter backup window than existing approaches. Our experimental results with real world datasets show that SAM not only has a higher de-duplication efficiency/overhead ratio than existing solutions, but also shortens the backup window by an average of 38.7%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信