{"title":"探讨蛋白激酶和磷酸酶在心脏病理生理功能调节中的复杂相互作用","authors":"Dr Chrysanthus Chukwuma Sr","doi":"10.15406/mojbm.2021.06.00151","DOIUrl":null,"url":null,"abstract":"Cardiovascular disease manifests as an intricately complex entity presenting as a derangement of the cardiovascular system. Cardiac or heart failure connotes the pathophysiological state in which deficient cardiac output compromises the body burden and requirements. Protein kinases regulate several pathophysiological processes and are emerging targets for drug lead or discovery. The protein kinases are family members of the serine/threonine phosphatases. Protein kinases and phosphatases are pivotal in the regulatory mechanisms in the reversible phosphorylation of diverse effectors whereby discrete signaling molecules regulate cardiac excitation and contraction. Protein phosphorylation is critical for the sustenance of cardiac functionalities. The two major contributory ingredients to progressive myocardium derangement are dysregulation of Ca2+processes and contemporaneous elevated concentrations of reactive oxygen species, ROS. Certain cardiac abnormalities include cardiac myopathy or hypertrophy due to response in untoward haemodynamic demand with concomitant progressive heart failure. The homeostasis or equilibrium between protein kinases and phosphatases influence cardiac morphology and excitability during pathological and physiological processes of the cardiovascular system.","PeriodicalId":127077,"journal":{"name":"MOJ Biology and Medicine","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Exploring the complex interplay in the regulation of cardiac pathophysiological functions by protein kinases and phosphatases\",\"authors\":\"Dr Chrysanthus Chukwuma Sr\",\"doi\":\"10.15406/mojbm.2021.06.00151\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cardiovascular disease manifests as an intricately complex entity presenting as a derangement of the cardiovascular system. Cardiac or heart failure connotes the pathophysiological state in which deficient cardiac output compromises the body burden and requirements. Protein kinases regulate several pathophysiological processes and are emerging targets for drug lead or discovery. The protein kinases are family members of the serine/threonine phosphatases. Protein kinases and phosphatases are pivotal in the regulatory mechanisms in the reversible phosphorylation of diverse effectors whereby discrete signaling molecules regulate cardiac excitation and contraction. Protein phosphorylation is critical for the sustenance of cardiac functionalities. The two major contributory ingredients to progressive myocardium derangement are dysregulation of Ca2+processes and contemporaneous elevated concentrations of reactive oxygen species, ROS. Certain cardiac abnormalities include cardiac myopathy or hypertrophy due to response in untoward haemodynamic demand with concomitant progressive heart failure. The homeostasis or equilibrium between protein kinases and phosphatases influence cardiac morphology and excitability during pathological and physiological processes of the cardiovascular system.\",\"PeriodicalId\":127077,\"journal\":{\"name\":\"MOJ Biology and Medicine\",\"volume\":\"46 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"MOJ Biology and Medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15406/mojbm.2021.06.00151\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"MOJ Biology and Medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15406/mojbm.2021.06.00151","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Exploring the complex interplay in the regulation of cardiac pathophysiological functions by protein kinases and phosphatases
Cardiovascular disease manifests as an intricately complex entity presenting as a derangement of the cardiovascular system. Cardiac or heart failure connotes the pathophysiological state in which deficient cardiac output compromises the body burden and requirements. Protein kinases regulate several pathophysiological processes and are emerging targets for drug lead or discovery. The protein kinases are family members of the serine/threonine phosphatases. Protein kinases and phosphatases are pivotal in the regulatory mechanisms in the reversible phosphorylation of diverse effectors whereby discrete signaling molecules regulate cardiac excitation and contraction. Protein phosphorylation is critical for the sustenance of cardiac functionalities. The two major contributory ingredients to progressive myocardium derangement are dysregulation of Ca2+processes and contemporaneous elevated concentrations of reactive oxygen species, ROS. Certain cardiac abnormalities include cardiac myopathy or hypertrophy due to response in untoward haemodynamic demand with concomitant progressive heart failure. The homeostasis or equilibrium between protein kinases and phosphatases influence cardiac morphology and excitability during pathological and physiological processes of the cardiovascular system.