改进的du++框架在脑肿瘤分割中的应用

Fujuan Chen, Yi Ding, Zhixing Wu, Dongyuan Wu, Jinmei Wen
{"title":"改进的du++框架在脑肿瘤分割中的应用","authors":"Fujuan Chen, Yi Ding, Zhixing Wu, Dongyuan Wu, Jinmei Wen","doi":"10.1109/ICCWAMTIP.2018.8632559","DOIUrl":null,"url":null,"abstract":"We all know the advanced framework which is used to medical image processing is Unet, but it is struggling when it processes complex images. DenseNet is the state-of-the-art network, which has large parameters compared with Unet. Unet++ performs better on complex images than Unet. In this work, we proposes an novel network structure called Dense_Unet++(DU++), that can take advantage of feature fusion of the Unet++, reduces the DenseNet's parameters and further improves the segmentation accuracy. Our model is mainly implemented by combine Half Dense Unet(HDU)and Unet++. The long connections with different semantic levels do not achieve the effect of feature fusion, so our paper propose that built a series of bridges for different semantic levels within the DU++ and abandoned the original long connections. We apply this framework to brain tumor segmentation. In the end, our experiment achieved a promising result.","PeriodicalId":117919,"journal":{"name":"2018 15th International Computer Conference on Wavelet Active Media Technology and Information Processing (ICCWAMTIP)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"An Improved Framework Called Du++ Applied to Brain Tumor Segmentation\",\"authors\":\"Fujuan Chen, Yi Ding, Zhixing Wu, Dongyuan Wu, Jinmei Wen\",\"doi\":\"10.1109/ICCWAMTIP.2018.8632559\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We all know the advanced framework which is used to medical image processing is Unet, but it is struggling when it processes complex images. DenseNet is the state-of-the-art network, which has large parameters compared with Unet. Unet++ performs better on complex images than Unet. In this work, we proposes an novel network structure called Dense_Unet++(DU++), that can take advantage of feature fusion of the Unet++, reduces the DenseNet's parameters and further improves the segmentation accuracy. Our model is mainly implemented by combine Half Dense Unet(HDU)and Unet++. The long connections with different semantic levels do not achieve the effect of feature fusion, so our paper propose that built a series of bridges for different semantic levels within the DU++ and abandoned the original long connections. We apply this framework to brain tumor segmentation. In the end, our experiment achieved a promising result.\",\"PeriodicalId\":117919,\"journal\":{\"name\":\"2018 15th International Computer Conference on Wavelet Active Media Technology and Information Processing (ICCWAMTIP)\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 15th International Computer Conference on Wavelet Active Media Technology and Information Processing (ICCWAMTIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCWAMTIP.2018.8632559\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 15th International Computer Conference on Wavelet Active Media Technology and Information Processing (ICCWAMTIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCWAMTIP.2018.8632559","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

我们都知道用于医学图像处理的先进框架是Unet,但它在处理复杂图像时却举步维艰。DenseNet是最先进的网络,与Unet相比具有更大的参数。Unet++在复杂图像上的表现优于Unet。在这项工作中,我们提出了一种新的网络结构,称为Dense_Unet++(du++),它可以利用Unet++的特征融合,减少DenseNet的参数,进一步提高分割精度。该模型主要采用半密集Unet(HDU)和Unet++的结合实现。不同语义层次的长连接无法达到特征融合的效果,因此本文提出在du++内部构建一系列不同语义层次的桥接,放弃原有的长连接。我们将此框架应用于脑肿瘤的分割。最后,我们的实验取得了令人满意的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Improved Framework Called Du++ Applied to Brain Tumor Segmentation
We all know the advanced framework which is used to medical image processing is Unet, but it is struggling when it processes complex images. DenseNet is the state-of-the-art network, which has large parameters compared with Unet. Unet++ performs better on complex images than Unet. In this work, we proposes an novel network structure called Dense_Unet++(DU++), that can take advantage of feature fusion of the Unet++, reduces the DenseNet's parameters and further improves the segmentation accuracy. Our model is mainly implemented by combine Half Dense Unet(HDU)and Unet++. The long connections with different semantic levels do not achieve the effect of feature fusion, so our paper propose that built a series of bridges for different semantic levels within the DU++ and abandoned the original long connections. We apply this framework to brain tumor segmentation. In the end, our experiment achieved a promising result.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信