鲁棒最优子带小波倒谱系数语音识别方法

J. Alex, N. Venkatesan
{"title":"鲁棒最优子带小波倒谱系数语音识别方法","authors":"J. Alex, N. Venkatesan","doi":"10.1504/IJCAET.2019.098137","DOIUrl":null,"url":null,"abstract":"The objective of this paper is to propose a robust feature extraction technique for speech recognition system which is insusceptible in the adverse environments. Efficacy of the speech recognition system depends on the feature extraction method. This paper proposes an auditory scale like filter banks using optimal sub-band tree structuring based on wavelet transform. The optimised wavelet filter banks along with energy, logarithmic, discrete cosine transform and cepstral mean normalisation blocks form a robust feature extraction method. This method is validated on a hidden Markov model (HMM)-based single Gaussian isolated word recognition system for additive white Gaussian noise, street and airport noises with different noise levels. Compared with Fourier transform-based methods such as mel-frequency cepstral coefficient (MFCC) and perceptual linear predictive (PLP) methods, the wavelet transform-based method yielded significant improvement across all the noise levels. The experiments also performed with higher dimensions of MFCC features including delta, acceleration features (MFCC_D_A). This study proves that the outcome of wavelet transform-based method gives an increased recognition accuracy of 13% over MFCC_D_A for non-stationary noises.","PeriodicalId":346646,"journal":{"name":"Int. J. Comput. Aided Eng. Technol.","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Robust optimal sub-band wavelet cepstral coefficient method for speech recognition\",\"authors\":\"J. Alex, N. Venkatesan\",\"doi\":\"10.1504/IJCAET.2019.098137\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The objective of this paper is to propose a robust feature extraction technique for speech recognition system which is insusceptible in the adverse environments. Efficacy of the speech recognition system depends on the feature extraction method. This paper proposes an auditory scale like filter banks using optimal sub-band tree structuring based on wavelet transform. The optimised wavelet filter banks along with energy, logarithmic, discrete cosine transform and cepstral mean normalisation blocks form a robust feature extraction method. This method is validated on a hidden Markov model (HMM)-based single Gaussian isolated word recognition system for additive white Gaussian noise, street and airport noises with different noise levels. Compared with Fourier transform-based methods such as mel-frequency cepstral coefficient (MFCC) and perceptual linear predictive (PLP) methods, the wavelet transform-based method yielded significant improvement across all the noise levels. The experiments also performed with higher dimensions of MFCC features including delta, acceleration features (MFCC_D_A). This study proves that the outcome of wavelet transform-based method gives an increased recognition accuracy of 13% over MFCC_D_A for non-stationary noises.\",\"PeriodicalId\":346646,\"journal\":{\"name\":\"Int. J. Comput. Aided Eng. Technol.\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-03-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Comput. Aided Eng. Technol.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/IJCAET.2019.098137\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Comput. Aided Eng. Technol.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJCAET.2019.098137","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文的目的是提出一种鲁棒的特征提取技术,使语音识别系统在不利环境中不受影响。语音识别系统的有效性取决于特征提取方法。本文提出了一种基于小波变换的最优子带树结构的类听觉尺度滤波器组。优化后的小波滤波器组与能量、对数、离散余弦变换和倒谱均值归一化块形成了鲁棒的特征提取方法。在基于隐马尔可夫模型(HMM)的单高斯孤立词识别系统上对不同噪声水平的加性高斯白噪声、街道噪声和机场噪声进行了验证。与基于傅里叶变换的方法(如mel-frequency倒谱系数(MFCC)和感知线性预测(PLP)方法相比,基于小波变换的方法在所有噪声水平上都有显著改善。实验还使用了更高维度的MFCC特征,包括delta、加速度特征(MFCC_D_A)。研究结果表明,基于小波变换的方法对非平稳噪声的识别精度比MFCC_D_A提高了13%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Robust optimal sub-band wavelet cepstral coefficient method for speech recognition
The objective of this paper is to propose a robust feature extraction technique for speech recognition system which is insusceptible in the adverse environments. Efficacy of the speech recognition system depends on the feature extraction method. This paper proposes an auditory scale like filter banks using optimal sub-band tree structuring based on wavelet transform. The optimised wavelet filter banks along with energy, logarithmic, discrete cosine transform and cepstral mean normalisation blocks form a robust feature extraction method. This method is validated on a hidden Markov model (HMM)-based single Gaussian isolated word recognition system for additive white Gaussian noise, street and airport noises with different noise levels. Compared with Fourier transform-based methods such as mel-frequency cepstral coefficient (MFCC) and perceptual linear predictive (PLP) methods, the wavelet transform-based method yielded significant improvement across all the noise levels. The experiments also performed with higher dimensions of MFCC features including delta, acceleration features (MFCC_D_A). This study proves that the outcome of wavelet transform-based method gives an increased recognition accuracy of 13% over MFCC_D_A for non-stationary noises.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信