N. Silva, A. Almeida, J. C. Costa, M. Gomes, R. Alves, A. Guerreiro
{"title":"四能级原子光学系统中的耗散孤子","authors":"N. Silva, A. Almeida, J. C. Costa, M. Gomes, R. Alves, A. Guerreiro","doi":"10.1117/12.2272064","DOIUrl":null,"url":null,"abstract":"In this work we develop a theoretical model to describe the propagation of an optical pulse in a 4-level atomic system. We investigate the existence of dissipative soliton solutions and analyze the stability of these solitary waves, comparing the analytical results with computational simulations based on the effective (1+1)-dimensional model derived from the Maxwell-Bloch equation under the slowly-varying envelope approximation.","PeriodicalId":150522,"journal":{"name":"Applications of Optics and Photonics","volume":"162 4","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Dissipative solitons in 4-level atomic optical systems\",\"authors\":\"N. Silva, A. Almeida, J. C. Costa, M. Gomes, R. Alves, A. Guerreiro\",\"doi\":\"10.1117/12.2272064\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work we develop a theoretical model to describe the propagation of an optical pulse in a 4-level atomic system. We investigate the existence of dissipative soliton solutions and analyze the stability of these solitary waves, comparing the analytical results with computational simulations based on the effective (1+1)-dimensional model derived from the Maxwell-Bloch equation under the slowly-varying envelope approximation.\",\"PeriodicalId\":150522,\"journal\":{\"name\":\"Applications of Optics and Photonics\",\"volume\":\"162 4\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applications of Optics and Photonics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2272064\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applications of Optics and Photonics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2272064","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Dissipative solitons in 4-level atomic optical systems
In this work we develop a theoretical model to describe the propagation of an optical pulse in a 4-level atomic system. We investigate the existence of dissipative soliton solutions and analyze the stability of these solitary waves, comparing the analytical results with computational simulations based on the effective (1+1)-dimensional model derived from the Maxwell-Bloch equation under the slowly-varying envelope approximation.