C. J. V. Filho, F. Scalcon, R. Vieira, B. Nahid-Mobarakeh
{"title":"一种基于β轴的低速无传感器IPMSM高频信号注入新模型","authors":"C. J. V. Filho, F. Scalcon, R. Vieira, B. Nahid-Mobarakeh","doi":"10.1109/IECON49645.2022.9968828","DOIUrl":null,"url":null,"abstract":"This paper presents a high frequency linear model for low-speed sensorless control of interior permanent magnet synchronous motor (IPMSM) drives. The proposed model uses a β-axis high frequency signal injection in order to model a new high frequency flux variable, which has similar properties to the standard electromotive force (EMF) used for high-speed sensorless control. Through the proposed model, the well established observer techniques from the literature can be used for rotor position and speed estimation. Thus, the low-speed sensorless scheme can be designed in similar form as the high-speed EMF based methods. Here, position and speed estimation are performed by an adaptive full-order observer, which is designed through a pole placement method and its stability constraints are investigated. Simulation results validate the proposed high frequency linear model and adaptive observer design method under sensorless vector control.","PeriodicalId":125740,"journal":{"name":"IECON 2022 – 48th Annual Conference of the IEEE Industrial Electronics Society","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A New β-axis Based High-Frequency Signal Injection Model for Low-Speed Sensorless IPMSM Drives\",\"authors\":\"C. J. V. Filho, F. Scalcon, R. Vieira, B. Nahid-Mobarakeh\",\"doi\":\"10.1109/IECON49645.2022.9968828\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a high frequency linear model for low-speed sensorless control of interior permanent magnet synchronous motor (IPMSM) drives. The proposed model uses a β-axis high frequency signal injection in order to model a new high frequency flux variable, which has similar properties to the standard electromotive force (EMF) used for high-speed sensorless control. Through the proposed model, the well established observer techniques from the literature can be used for rotor position and speed estimation. Thus, the low-speed sensorless scheme can be designed in similar form as the high-speed EMF based methods. Here, position and speed estimation are performed by an adaptive full-order observer, which is designed through a pole placement method and its stability constraints are investigated. Simulation results validate the proposed high frequency linear model and adaptive observer design method under sensorless vector control.\",\"PeriodicalId\":125740,\"journal\":{\"name\":\"IECON 2022 – 48th Annual Conference of the IEEE Industrial Electronics Society\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IECON 2022 – 48th Annual Conference of the IEEE Industrial Electronics Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IECON49645.2022.9968828\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IECON 2022 – 48th Annual Conference of the IEEE Industrial Electronics Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IECON49645.2022.9968828","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A New β-axis Based High-Frequency Signal Injection Model for Low-Speed Sensorless IPMSM Drives
This paper presents a high frequency linear model for low-speed sensorless control of interior permanent magnet synchronous motor (IPMSM) drives. The proposed model uses a β-axis high frequency signal injection in order to model a new high frequency flux variable, which has similar properties to the standard electromotive force (EMF) used for high-speed sensorless control. Through the proposed model, the well established observer techniques from the literature can be used for rotor position and speed estimation. Thus, the low-speed sensorless scheme can be designed in similar form as the high-speed EMF based methods. Here, position and speed estimation are performed by an adaptive full-order observer, which is designed through a pole placement method and its stability constraints are investigated. Simulation results validate the proposed high frequency linear model and adaptive observer design method under sensorless vector control.