注释语法的有效枚举

Antoine Amarilli, Louis Jachiet, Martin Muñoz, Cristian Riveros
{"title":"注释语法的有效枚举","authors":"Antoine Amarilli, Louis Jachiet, Martin Muñoz, Cristian Riveros","doi":"10.1145/3517804.3526232","DOIUrl":null,"url":null,"abstract":"We introduce annotated grammars, an extension of context-free grammars which allows annotations on terminals. Our model extends the standard notion of regular spanners, and is more expressive than the extraction grammars recently introduced by Peterfreund. We study the enumeration problem for annotated grammars: fixing a grammar, and given a string as input, enumerate all annotations of the string that form a word derivable from the grammar. Our first result is an algorithm for unambiguous annotated grammars, which preprocesses the input string in cubic time and enumerates all annotations with output-linear delay. This improves over Peterfreund's result, which needs quintic time preprocessing to achieve this delay bound. We then study how we can reduce the preprocessing time while keeping the same delay bound, by making additional assumptions on the grammar. Specifically, we present a class of grammars which only have one derivation shape for all outputs, for which we can enumerate with quadratic time preprocessing. We also give classes that generalize regular spanners for which linear time preprocessing suffices.","PeriodicalId":230606,"journal":{"name":"Proceedings of the 41st ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Efficient Enumeration for Annotated Grammars\",\"authors\":\"Antoine Amarilli, Louis Jachiet, Martin Muñoz, Cristian Riveros\",\"doi\":\"10.1145/3517804.3526232\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce annotated grammars, an extension of context-free grammars which allows annotations on terminals. Our model extends the standard notion of regular spanners, and is more expressive than the extraction grammars recently introduced by Peterfreund. We study the enumeration problem for annotated grammars: fixing a grammar, and given a string as input, enumerate all annotations of the string that form a word derivable from the grammar. Our first result is an algorithm for unambiguous annotated grammars, which preprocesses the input string in cubic time and enumerates all annotations with output-linear delay. This improves over Peterfreund's result, which needs quintic time preprocessing to achieve this delay bound. We then study how we can reduce the preprocessing time while keeping the same delay bound, by making additional assumptions on the grammar. Specifically, we present a class of grammars which only have one derivation shape for all outputs, for which we can enumerate with quadratic time preprocessing. We also give classes that generalize regular spanners for which linear time preprocessing suffices.\",\"PeriodicalId\":230606,\"journal\":{\"name\":\"Proceedings of the 41st ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems\",\"volume\":\"44 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 41st ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3517804.3526232\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 41st ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3517804.3526232","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

我们引入了注释语法,它是上下文无关语法的扩展,允许在终端上进行注释。我们的模型扩展了正则扳手的标准概念,并且比Peterfreund最近引入的提取语法更具表现力。研究了带注释语法的枚举问题:固定一个语法,给定一个字符串作为输入,枚举该字符串的所有注释,这些注释构成了一个可从该语法派生的词。我们的第一个结果是无二义注释语法的算法,它在三次时间内预处理输入字符串,并枚举所有具有输出线性延迟的注释。这比Peterfreund的结果有所改进,后者需要五次时间预处理才能达到这个延迟界限。然后,我们通过对语法进行额外的假设,研究如何在保持相同延迟范围的情况下减少预处理时间。具体地说,我们提出了一类对所有输出只有一个派生形状的语法,我们可以用二次时间预处理来枚举它。我们还给出了一般化常规扳手的类,其中线性时间预处理就足够了。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Efficient Enumeration for Annotated Grammars
We introduce annotated grammars, an extension of context-free grammars which allows annotations on terminals. Our model extends the standard notion of regular spanners, and is more expressive than the extraction grammars recently introduced by Peterfreund. We study the enumeration problem for annotated grammars: fixing a grammar, and given a string as input, enumerate all annotations of the string that form a word derivable from the grammar. Our first result is an algorithm for unambiguous annotated grammars, which preprocesses the input string in cubic time and enumerates all annotations with output-linear delay. This improves over Peterfreund's result, which needs quintic time preprocessing to achieve this delay bound. We then study how we can reduce the preprocessing time while keeping the same delay bound, by making additional assumptions on the grammar. Specifically, we present a class of grammars which only have one derivation shape for all outputs, for which we can enumerate with quadratic time preprocessing. We also give classes that generalize regular spanners for which linear time preprocessing suffices.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信