对数正态和威布尔分布sar杂波中MSTAR数据的CFAR检测实验

Dheeren Ku Mahapatra, Kumari Rosy Pradhan, L. P. Roy
{"title":"对数正态和威布尔分布sar杂波中MSTAR数据的CFAR检测实验","authors":"Dheeren Ku Mahapatra, Kumari Rosy Pradhan, L. P. Roy","doi":"10.1109/ICMOCE.2015.7489771","DOIUrl":null,"url":null,"abstract":"In this paper, a constant false alarm rate (CFAR) target detection algorithm is presented. Here, lognormal and Weibull distributions are considered for modeling clutter amplitude of synthetic aperture radar(SAR) images. Then Kullback-Leibler (KL) goodness-of-fit test is employed to evaluate the histogram matching accuracy of estimated probability density functions (pdfs) of selected models with SAR clutter data histogram. With the use of appropriate background clutter model, CFAR detection algorithm is applied to moving and stationary target acquisition and recognition (MSTAR) data. Experimental results demonstrate that, accuracy of CFAR detector is more for Weibull clutter compared to the same for lognormal clutter.","PeriodicalId":352568,"journal":{"name":"2015 International Conference on Microwave, Optical and Communication Engineering (ICMOCE)","volume":"106 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"An experiment on MSTAR data for CFAR detection in lognormal and weibull distributed sar clutter\",\"authors\":\"Dheeren Ku Mahapatra, Kumari Rosy Pradhan, L. P. Roy\",\"doi\":\"10.1109/ICMOCE.2015.7489771\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a constant false alarm rate (CFAR) target detection algorithm is presented. Here, lognormal and Weibull distributions are considered for modeling clutter amplitude of synthetic aperture radar(SAR) images. Then Kullback-Leibler (KL) goodness-of-fit test is employed to evaluate the histogram matching accuracy of estimated probability density functions (pdfs) of selected models with SAR clutter data histogram. With the use of appropriate background clutter model, CFAR detection algorithm is applied to moving and stationary target acquisition and recognition (MSTAR) data. Experimental results demonstrate that, accuracy of CFAR detector is more for Weibull clutter compared to the same for lognormal clutter.\",\"PeriodicalId\":352568,\"journal\":{\"name\":\"2015 International Conference on Microwave, Optical and Communication Engineering (ICMOCE)\",\"volume\":\"106 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 International Conference on Microwave, Optical and Communication Engineering (ICMOCE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMOCE.2015.7489771\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Microwave, Optical and Communication Engineering (ICMOCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMOCE.2015.7489771","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

本文提出了一种恒虚警率(CFAR)目标检测算法。本文考虑对数正态分布和威布尔分布对合成孔径雷达(SAR)图像的杂波振幅进行建模。然后利用Kullback-Leibler (KL)拟合优度检验对所选模型估计的概率密度函数(pdf)与SAR杂波数据直方图的匹配精度进行评价。利用合适的背景杂波模型,将CFAR检测算法应用于运动目标和静止目标的获取与识别(MSTAR)数据。实验结果表明,相对于对数正态杂波,CFAR检测器对威布尔杂波的检测精度更高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An experiment on MSTAR data for CFAR detection in lognormal and weibull distributed sar clutter
In this paper, a constant false alarm rate (CFAR) target detection algorithm is presented. Here, lognormal and Weibull distributions are considered for modeling clutter amplitude of synthetic aperture radar(SAR) images. Then Kullback-Leibler (KL) goodness-of-fit test is employed to evaluate the histogram matching accuracy of estimated probability density functions (pdfs) of selected models with SAR clutter data histogram. With the use of appropriate background clutter model, CFAR detection algorithm is applied to moving and stationary target acquisition and recognition (MSTAR) data. Experimental results demonstrate that, accuracy of CFAR detector is more for Weibull clutter compared to the same for lognormal clutter.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信