{"title":"快速点火器条件下对磁场和电子输运的磁动效应","authors":"R. Mason, M. Glinsky, M. Tabak","doi":"10.1109/PLASMA.1994.589131","DOIUrl":null,"url":null,"abstract":"The Fast Ignitor ICF concept will use bright source lasers to induce thermonuclear ignition. The absorption of ultra-intense laser pulses at target surfaces has been predicted to generate relativistic electrons and self-magnetic fields exceeding 100 MG. The authors have used the implicit multi-fluid code ANTHEM to track the emitted hot electrons from the corona, where they drive a fast expansion of the ions, to the dense target interior where they are slowed and absorbed into the background by collisions. In the absence of ponderomotive effects, the external magnetic field has the usual thermoelectric polarity, while a weaker field with reversed polarity is produced below critical. The authors will discuss field and transport changes associated with the inclusion of ponderomotive influences.","PeriodicalId":254741,"journal":{"name":"Proceedings of 1994 IEEE 21st International Conference on Plasma Sciences (ICOPS)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Poneromotive effects on magnetic fields and electron transport under fast ignitor conditions\",\"authors\":\"R. Mason, M. Glinsky, M. Tabak\",\"doi\":\"10.1109/PLASMA.1994.589131\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Fast Ignitor ICF concept will use bright source lasers to induce thermonuclear ignition. The absorption of ultra-intense laser pulses at target surfaces has been predicted to generate relativistic electrons and self-magnetic fields exceeding 100 MG. The authors have used the implicit multi-fluid code ANTHEM to track the emitted hot electrons from the corona, where they drive a fast expansion of the ions, to the dense target interior where they are slowed and absorbed into the background by collisions. In the absence of ponderomotive effects, the external magnetic field has the usual thermoelectric polarity, while a weaker field with reversed polarity is produced below critical. The authors will discuss field and transport changes associated with the inclusion of ponderomotive influences.\",\"PeriodicalId\":254741,\"journal\":{\"name\":\"Proceedings of 1994 IEEE 21st International Conference on Plasma Sciences (ICOPS)\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1994-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of 1994 IEEE 21st International Conference on Plasma Sciences (ICOPS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PLASMA.1994.589131\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 1994 IEEE 21st International Conference on Plasma Sciences (ICOPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PLASMA.1994.589131","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Poneromotive effects on magnetic fields and electron transport under fast ignitor conditions
The Fast Ignitor ICF concept will use bright source lasers to induce thermonuclear ignition. The absorption of ultra-intense laser pulses at target surfaces has been predicted to generate relativistic electrons and self-magnetic fields exceeding 100 MG. The authors have used the implicit multi-fluid code ANTHEM to track the emitted hot electrons from the corona, where they drive a fast expansion of the ions, to the dense target interior where they are slowed and absorbed into the background by collisions. In the absence of ponderomotive effects, the external magnetic field has the usual thermoelectric polarity, while a weaker field with reversed polarity is produced below critical. The authors will discuss field and transport changes associated with the inclusion of ponderomotive influences.