{"title":"在基于短语的统计机器翻译中,更好的统计估计可以使所有短语受益","authors":"K. Sima'an, M. Mylonakis","doi":"10.1109/SLT.2008.4777884","DOIUrl":null,"url":null,"abstract":"The heuristic estimates of conditional phrase translation probabilities are based on frequency counts in a word-aligned parallel corpus. Earlier attempts at more principled estimation using Expectation-Maximization (EM) under perform this heuristic. This paper shows that a recently introduced novel estimator based on smoothing might provide a good alternative. When all phrase pairs are estimated (no length cut-off), this estimator slightly outperforms the heuristic estimator.","PeriodicalId":186876,"journal":{"name":"2008 IEEE Spoken Language Technology Workshop","volume":"106 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Better statistical estimation can benefit all phrases in phrase-based statistical machine translation\",\"authors\":\"K. Sima'an, M. Mylonakis\",\"doi\":\"10.1109/SLT.2008.4777884\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The heuristic estimates of conditional phrase translation probabilities are based on frequency counts in a word-aligned parallel corpus. Earlier attempts at more principled estimation using Expectation-Maximization (EM) under perform this heuristic. This paper shows that a recently introduced novel estimator based on smoothing might provide a good alternative. When all phrase pairs are estimated (no length cut-off), this estimator slightly outperforms the heuristic estimator.\",\"PeriodicalId\":186876,\"journal\":{\"name\":\"2008 IEEE Spoken Language Technology Workshop\",\"volume\":\"106 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 IEEE Spoken Language Technology Workshop\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SLT.2008.4777884\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE Spoken Language Technology Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SLT.2008.4777884","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Better statistical estimation can benefit all phrases in phrase-based statistical machine translation
The heuristic estimates of conditional phrase translation probabilities are based on frequency counts in a word-aligned parallel corpus. Earlier attempts at more principled estimation using Expectation-Maximization (EM) under perform this heuristic. This paper shows that a recently introduced novel estimator based on smoothing might provide a good alternative. When all phrase pairs are estimated (no length cut-off), this estimator slightly outperforms the heuristic estimator.