在基于短语的统计机器翻译中,更好的统计估计可以使所有短语受益

K. Sima'an, M. Mylonakis
{"title":"在基于短语的统计机器翻译中,更好的统计估计可以使所有短语受益","authors":"K. Sima'an, M. Mylonakis","doi":"10.1109/SLT.2008.4777884","DOIUrl":null,"url":null,"abstract":"The heuristic estimates of conditional phrase translation probabilities are based on frequency counts in a word-aligned parallel corpus. Earlier attempts at more principled estimation using Expectation-Maximization (EM) under perform this heuristic. This paper shows that a recently introduced novel estimator based on smoothing might provide a good alternative. When all phrase pairs are estimated (no length cut-off), this estimator slightly outperforms the heuristic estimator.","PeriodicalId":186876,"journal":{"name":"2008 IEEE Spoken Language Technology Workshop","volume":"106 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Better statistical estimation can benefit all phrases in phrase-based statistical machine translation\",\"authors\":\"K. Sima'an, M. Mylonakis\",\"doi\":\"10.1109/SLT.2008.4777884\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The heuristic estimates of conditional phrase translation probabilities are based on frequency counts in a word-aligned parallel corpus. Earlier attempts at more principled estimation using Expectation-Maximization (EM) under perform this heuristic. This paper shows that a recently introduced novel estimator based on smoothing might provide a good alternative. When all phrase pairs are estimated (no length cut-off), this estimator slightly outperforms the heuristic estimator.\",\"PeriodicalId\":186876,\"journal\":{\"name\":\"2008 IEEE Spoken Language Technology Workshop\",\"volume\":\"106 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 IEEE Spoken Language Technology Workshop\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SLT.2008.4777884\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE Spoken Language Technology Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SLT.2008.4777884","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

条件短语翻译概率的启发式估计是基于一个词对齐的平行语料库中的频率计数。早期尝试使用期望最大化(EM)进行更有原则的估计,但没有执行这种启发式。本文表明,最近引入的一种新的基于平滑的估计器可能提供一个很好的替代方法。当对所有短语对进行估计时(没有长度截止),该估计器的性能略优于启发式估计器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Better statistical estimation can benefit all phrases in phrase-based statistical machine translation
The heuristic estimates of conditional phrase translation probabilities are based on frequency counts in a word-aligned parallel corpus. Earlier attempts at more principled estimation using Expectation-Maximization (EM) under perform this heuristic. This paper shows that a recently introduced novel estimator based on smoothing might provide a good alternative. When all phrase pairs are estimated (no length cut-off), this estimator slightly outperforms the heuristic estimator.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信