EmHash:基于BERT嵌入的神经网络标签推荐

Mohadese Kaviani, H. Rahmani
{"title":"EmHash:基于BERT嵌入的神经网络标签推荐","authors":"Mohadese Kaviani, H. Rahmani","doi":"10.1109/ICWR49608.2020.9122275","DOIUrl":null,"url":null,"abstract":"Social media like Twitter have become very popular in recent decades. Hashtags are new kind of metadata which make non-structured tweets into searchable semistructured content. There are varied previous methods which recommend hashtags for new tweets. However, to the best of our knowledge, there is no previous word that uses BERT embedding for this purpose. In this paper, we propose a new method called EmHash that uses neural network based on BERT embedding to recommend new hashtags for each tweet. Unlike other word embeddings, BERT embedding constructs different vectors for the same word in different contexts. Emhash succeeded in outperforming three methods LDA, SVM, and TTM with respect to recall measure.","PeriodicalId":231982,"journal":{"name":"2020 6th International Conference on Web Research (ICWR)","volume":"253 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":"{\"title\":\"EmHash: Hashtag Recommendation using Neural Network based on BERT Embedding\",\"authors\":\"Mohadese Kaviani, H. Rahmani\",\"doi\":\"10.1109/ICWR49608.2020.9122275\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Social media like Twitter have become very popular in recent decades. Hashtags are new kind of metadata which make non-structured tweets into searchable semistructured content. There are varied previous methods which recommend hashtags for new tweets. However, to the best of our knowledge, there is no previous word that uses BERT embedding for this purpose. In this paper, we propose a new method called EmHash that uses neural network based on BERT embedding to recommend new hashtags for each tweet. Unlike other word embeddings, BERT embedding constructs different vectors for the same word in different contexts. Emhash succeeded in outperforming three methods LDA, SVM, and TTM with respect to recall measure.\",\"PeriodicalId\":231982,\"journal\":{\"name\":\"2020 6th International Conference on Web Research (ICWR)\",\"volume\":\"253 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"21\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 6th International Conference on Web Research (ICWR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICWR49608.2020.9122275\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 6th International Conference on Web Research (ICWR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICWR49608.2020.9122275","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

摘要

近几十年来,像推特这样的社交媒体变得非常流行。标签是一种新的元数据,它将非结构化的推文变成可搜索的半结构化内容。以前有各种各样的方法可以为新推文推荐标签。然而,据我们所知,之前没有一个词将BERT嵌入用于此目的。在本文中,我们提出了一种名为EmHash的新方法,该方法使用基于BERT嵌入的神经网络为每条推文推荐新的标签。与其他词嵌入不同,BERT嵌入在不同的上下文中为同一个词构建不同的向量。Emhash在召回度量方面优于LDA、SVM和TTM三种方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
EmHash: Hashtag Recommendation using Neural Network based on BERT Embedding
Social media like Twitter have become very popular in recent decades. Hashtags are new kind of metadata which make non-structured tweets into searchable semistructured content. There are varied previous methods which recommend hashtags for new tweets. However, to the best of our knowledge, there is no previous word that uses BERT embedding for this purpose. In this paper, we propose a new method called EmHash that uses neural network based on BERT embedding to recommend new hashtags for each tweet. Unlike other word embeddings, BERT embedding constructs different vectors for the same word in different contexts. Emhash succeeded in outperforming three methods LDA, SVM, and TTM with respect to recall measure.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信