无spmd数据并行的集群加速方法

M. Drocco, Claudia Misale, Marco Aldinucci
{"title":"无spmd数据并行的集群加速方法","authors":"M. Drocco, Claudia Misale, Marco Aldinucci","doi":"10.1109/PDP.2016.97","DOIUrl":null,"url":null,"abstract":"In this paper we present a novel approach for functional-style programming of distributed-memory clusters, targeting data-centric applications. The programming model proposed is purely sequential, SPMD-free and based on high-level functional features introduced since C++11 specification. Additionally, we propose a novel cluster-as-accelerator design principle. In this scheme, cluster nodes act as general interpreters of user-defined functional tasks over node-local portions of distributed data structures. We envision coupling a simple yet powerful programming model with a lightweight, locality-aware distributed runtime as a promising step along the road towards high-performance data analytics, in particular under the perspective of the upcoming exascale era. We implemented the proposed approach in SkeDaTo, a prototyping C++ library of data-parallel skeletons exploiting cluster-as-accelerator at the bottom layer of the runtime software stack.","PeriodicalId":192273,"journal":{"name":"2016 24th Euromicro International Conference on Parallel, Distributed, and Network-Based Processing (PDP)","volume":" 20","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A Cluster-as-Accelerator Approach for SPMD-Free Data Parallelism\",\"authors\":\"M. Drocco, Claudia Misale, Marco Aldinucci\",\"doi\":\"10.1109/PDP.2016.97\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we present a novel approach for functional-style programming of distributed-memory clusters, targeting data-centric applications. The programming model proposed is purely sequential, SPMD-free and based on high-level functional features introduced since C++11 specification. Additionally, we propose a novel cluster-as-accelerator design principle. In this scheme, cluster nodes act as general interpreters of user-defined functional tasks over node-local portions of distributed data structures. We envision coupling a simple yet powerful programming model with a lightweight, locality-aware distributed runtime as a promising step along the road towards high-performance data analytics, in particular under the perspective of the upcoming exascale era. We implemented the proposed approach in SkeDaTo, a prototyping C++ library of data-parallel skeletons exploiting cluster-as-accelerator at the bottom layer of the runtime software stack.\",\"PeriodicalId\":192273,\"journal\":{\"name\":\"2016 24th Euromicro International Conference on Parallel, Distributed, and Network-Based Processing (PDP)\",\"volume\":\" 20\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-04-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 24th Euromicro International Conference on Parallel, Distributed, and Network-Based Processing (PDP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PDP.2016.97\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 24th Euromicro International Conference on Parallel, Distributed, and Network-Based Processing (PDP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PDP.2016.97","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

在本文中,我们提出了一种针对以数据为中心的应用程序的分布式内存集群的函数式编程的新方法。所提出的编程模型是纯顺序的、无spmd的,并且基于自c++ 11规范以来引入的高级功能特性。此外,我们提出了一种新的集群加速器设计原则。在该方案中,集群节点充当分布式数据结构节点局部部分的用户定义功能任务的一般解释器。我们设想将一个简单而强大的编程模型与一个轻量级的、位置感知的分布式运行时相结合,这是迈向高性能数据分析的有希望的一步,特别是在即将到来的百亿亿次时代的前景下。我们在SkeDaTo中实现了建议的方法,SkeDaTo是一个数据并行框架的原型c++库,在运行时软件堆栈的底层利用集群作为加速器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Cluster-as-Accelerator Approach for SPMD-Free Data Parallelism
In this paper we present a novel approach for functional-style programming of distributed-memory clusters, targeting data-centric applications. The programming model proposed is purely sequential, SPMD-free and based on high-level functional features introduced since C++11 specification. Additionally, we propose a novel cluster-as-accelerator design principle. In this scheme, cluster nodes act as general interpreters of user-defined functional tasks over node-local portions of distributed data structures. We envision coupling a simple yet powerful programming model with a lightweight, locality-aware distributed runtime as a promising step along the road towards high-performance data analytics, in particular under the perspective of the upcoming exascale era. We implemented the proposed approach in SkeDaTo, a prototyping C++ library of data-parallel skeletons exploiting cluster-as-accelerator at the bottom layer of the runtime software stack.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信