不完整数据下的核域描述:使用实例特定边界避免插值

Adam Gripton, W. Lu
{"title":"不完整数据下的核域描述:使用实例特定边界避免插值","authors":"Adam Gripton, W. Lu","doi":"10.1109/ICPR.2010.716","DOIUrl":null,"url":null,"abstract":"We present a method of performing kernel space domain description of a dataset with incomplete entries without the need for imputation, allowing kernel features of a class of data with missing features to be rigorously described. This addresses the problem that absent data completion is usually required before kernel classifiers, such as support vector domain description (SVDD), can be applied; equally, few existing techniques for incomplete data adequately address the issue of kernel spaces. Our method, which we call instance-specific domain description (ISDD), uses a parametrisation framework to compute minimal kernelised distances between data points with missing features through a series of optimisation runs, allowing evaluation of the kernel distance while avoiding subjective completions of missing data. We compare results of our method against those achieved by SVDD applied to an imputed dataset, using synthetic and experimental datasets where feature absence has a non-trivial structure. We show that our methods can achieve tighter sphere bounds when applied to linear and quadratic kernels.","PeriodicalId":309591,"journal":{"name":"2010 20th International Conference on Pattern Recognition","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Kernel Domain Description with Incomplete Data: Using Instance-Specific Margins to Avoid Imputation\",\"authors\":\"Adam Gripton, W. Lu\",\"doi\":\"10.1109/ICPR.2010.716\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a method of performing kernel space domain description of a dataset with incomplete entries without the need for imputation, allowing kernel features of a class of data with missing features to be rigorously described. This addresses the problem that absent data completion is usually required before kernel classifiers, such as support vector domain description (SVDD), can be applied; equally, few existing techniques for incomplete data adequately address the issue of kernel spaces. Our method, which we call instance-specific domain description (ISDD), uses a parametrisation framework to compute minimal kernelised distances between data points with missing features through a series of optimisation runs, allowing evaluation of the kernel distance while avoiding subjective completions of missing data. We compare results of our method against those achieved by SVDD applied to an imputed dataset, using synthetic and experimental datasets where feature absence has a non-trivial structure. We show that our methods can achieve tighter sphere bounds when applied to linear and quadratic kernels.\",\"PeriodicalId\":309591,\"journal\":{\"name\":\"2010 20th International Conference on Pattern Recognition\",\"volume\":\"46 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 20th International Conference on Pattern Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICPR.2010.716\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 20th International Conference on Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPR.2010.716","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了一种对具有不完整条目的数据集执行核空间域描述而不需要插入的方法,允许对一类具有缺失特征的数据的核特征进行严格描述。这解决了在应用支持向量域描述(SVDD)等内核分类器之前通常需要缺失数据补全的问题;同样,针对不完整数据的现有技术很少能充分解决内核空间的问题。我们的方法,我们称之为实例特定域描述(ISDD),使用参数化框架通过一系列优化运行来计算具有缺失特征的数据点之间的最小核化距离,允许评估核距离,同时避免主观完成缺失数据。我们将我们的方法的结果与应用于输入数据集的SVDD获得的结果进行比较,使用合成和实验数据集,其中特征缺失具有非平凡结构。我们证明,当应用于线性和二次核时,我们的方法可以获得更紧的球界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Kernel Domain Description with Incomplete Data: Using Instance-Specific Margins to Avoid Imputation
We present a method of performing kernel space domain description of a dataset with incomplete entries without the need for imputation, allowing kernel features of a class of data with missing features to be rigorously described. This addresses the problem that absent data completion is usually required before kernel classifiers, such as support vector domain description (SVDD), can be applied; equally, few existing techniques for incomplete data adequately address the issue of kernel spaces. Our method, which we call instance-specific domain description (ISDD), uses a parametrisation framework to compute minimal kernelised distances between data points with missing features through a series of optimisation runs, allowing evaluation of the kernel distance while avoiding subjective completions of missing data. We compare results of our method against those achieved by SVDD applied to an imputed dataset, using synthetic and experimental datasets where feature absence has a non-trivial structure. We show that our methods can achieve tighter sphere bounds when applied to linear and quadratic kernels.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信