非交换算子的一些二项式公式

P. Kuchment, S. Lvin
{"title":"非交换算子的一些二项式公式","authors":"P. Kuchment, S. Lvin","doi":"10.1090/CONM/733/14743","DOIUrl":null,"url":null,"abstract":"Let $D$ and $U$ be linear operators in a vector space (or more generally, elements of an associative algebra with a unit). We establish binomial-type identities for $D$ and $U$ assuming that either their commutator $[D,U]$ or the second commutator $[D,[D,U]]$ is proportional to $U$. \nOperators $D=d/dx$ (differentiation) and $U$- multiplication by $e^{\\lambda x}$ or by $\\sin \\lambda x$ are basic examples, for which some of these relations appeared unexpectedly as byproducts of an authors' previous medical imaging research.","PeriodicalId":432671,"journal":{"name":"Functional Analysis and Geometry","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Some binomial formulas for non-commuting\\n operators\",\"authors\":\"P. Kuchment, S. Lvin\",\"doi\":\"10.1090/CONM/733/14743\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $D$ and $U$ be linear operators in a vector space (or more generally, elements of an associative algebra with a unit). We establish binomial-type identities for $D$ and $U$ assuming that either their commutator $[D,U]$ or the second commutator $[D,[D,U]]$ is proportional to $U$. \\nOperators $D=d/dx$ (differentiation) and $U$- multiplication by $e^{\\\\lambda x}$ or by $\\\\sin \\\\lambda x$ are basic examples, for which some of these relations appeared unexpectedly as byproducts of an authors' previous medical imaging research.\",\"PeriodicalId\":432671,\"journal\":{\"name\":\"Functional Analysis and Geometry\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-01-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Functional Analysis and Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/CONM/733/14743\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Functional Analysis and Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/CONM/733/14743","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

设$D$和$U$是向量空间中的线性算子(或者更一般地说,是具有单位的关联代数的元素)。我们建立了$D$和$U$的二项型恒等式,假设它们的换向子$[D,U]$或第二个换向子$[D,[D,U]]$与$U$成正比。运算符$D=d/dx$(微分)和$U$ -乘以$e^{\lambda x}$或乘以$\sin \lambda x$是基本的例子,其中一些关系出乎意料地出现在作者以前的医学成像研究的副产品中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Some binomial formulas for non-commuting operators
Let $D$ and $U$ be linear operators in a vector space (or more generally, elements of an associative algebra with a unit). We establish binomial-type identities for $D$ and $U$ assuming that either their commutator $[D,U]$ or the second commutator $[D,[D,U]]$ is proportional to $U$. Operators $D=d/dx$ (differentiation) and $U$- multiplication by $e^{\lambda x}$ or by $\sin \lambda x$ are basic examples, for which some of these relations appeared unexpectedly as byproducts of an authors' previous medical imaging research.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信