基于BERT嵌入法和图卷积神经网络的文本分类问题

L. Tran, Tuan-Kiet Tran, An Mai
{"title":"基于BERT嵌入法和图卷积神经网络的文本分类问题","authors":"L. Tran, Tuan-Kiet Tran, An Mai","doi":"10.1109/atc52653.2021.9598337","DOIUrl":null,"url":null,"abstract":"This paper presents a hybrid technique of combining the BERT embedding method and the graph convolutional neural network. This combination is then employed to solve the text classification problem. Initially, we apply the BERT embedding method to the whole corpus in order to transform all the texts into numerical vectors. Then, the graph convolutional neural network will be applied to these numerical vectors to classify these texts into their appropriate classes. Especially, in our approach, we need only a few labeled texts for the model training. For the illustration, in this paper, we use the BBC news and the IMDB movie reviews datasets to perform our experiments, showing that the performance of the graph convolutional neural network model is better than the performances of the combination of the BERT embedding method with other classical machine learning models.","PeriodicalId":196900,"journal":{"name":"2021 International Conference on Advanced Technologies for Communications (ATC)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Text classification problems via BERT embedding method and graph convolutional neural network\",\"authors\":\"L. Tran, Tuan-Kiet Tran, An Mai\",\"doi\":\"10.1109/atc52653.2021.9598337\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a hybrid technique of combining the BERT embedding method and the graph convolutional neural network. This combination is then employed to solve the text classification problem. Initially, we apply the BERT embedding method to the whole corpus in order to transform all the texts into numerical vectors. Then, the graph convolutional neural network will be applied to these numerical vectors to classify these texts into their appropriate classes. Especially, in our approach, we need only a few labeled texts for the model training. For the illustration, in this paper, we use the BBC news and the IMDB movie reviews datasets to perform our experiments, showing that the performance of the graph convolutional neural network model is better than the performances of the combination of the BERT embedding method with other classical machine learning models.\",\"PeriodicalId\":196900,\"journal\":{\"name\":\"2021 International Conference on Advanced Technologies for Communications (ATC)\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 International Conference on Advanced Technologies for Communications (ATC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/atc52653.2021.9598337\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Advanced Technologies for Communications (ATC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/atc52653.2021.9598337","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文提出了一种将BERT嵌入方法与图卷积神经网络相结合的混合技术。然后使用这种组合来解决文本分类问题。首先,我们将BERT嵌入方法应用于整个语料库,将所有文本转换为数值向量。然后,将图卷积神经网络应用于这些数值向量,将这些文本分类到相应的类中。特别是,在我们的方法中,我们只需要几个标记文本来进行模型训练。为了说明这一点,在本文中,我们使用BBC新闻和IMDB电影评论数据集进行实验,结果表明,图卷积神经网络模型的性能优于BERT嵌入方法与其他经典机器学习模型相结合的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Text classification problems via BERT embedding method and graph convolutional neural network
This paper presents a hybrid technique of combining the BERT embedding method and the graph convolutional neural network. This combination is then employed to solve the text classification problem. Initially, we apply the BERT embedding method to the whole corpus in order to transform all the texts into numerical vectors. Then, the graph convolutional neural network will be applied to these numerical vectors to classify these texts into their appropriate classes. Especially, in our approach, we need only a few labeled texts for the model training. For the illustration, in this paper, we use the BBC news and the IMDB movie reviews datasets to perform our experiments, showing that the performance of the graph convolutional neural network model is better than the performances of the combination of the BERT embedding method with other classical machine learning models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信