带p-拉普拉斯算子的非线性Katugampola分数阶微分方程的存在性判别

Y. Arioua, Li Ma
{"title":"带p-拉普拉斯算子的非线性Katugampola分数阶微分方程的存在性判别","authors":"Y. Arioua, Li Ma","doi":"10.7153/fdc-2021-11-04","DOIUrl":null,"url":null,"abstract":"This paper is devoted to establishing vital criteria of existence and uniqueness for a class of nonlinear Katugampola fractional differential equations (KFDEs) with p -Laplacian operator subjecting to mixed boundary conditions. The reasoning is inspired by diverse classical fixed point theory, such as the Guo-Krasnosel’skii type fixed point principle and Banach contraction theorem. Additionally, several expressive examples are afforded to show the effectiveness of our theoretical results.","PeriodicalId":135809,"journal":{"name":"Fractional Differential Calculus","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"On criteria of existence for nonlinear Katugampola fractional differential equations with p-Laplacian operator\",\"authors\":\"Y. Arioua, Li Ma\",\"doi\":\"10.7153/fdc-2021-11-04\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper is devoted to establishing vital criteria of existence and uniqueness for a class of nonlinear Katugampola fractional differential equations (KFDEs) with p -Laplacian operator subjecting to mixed boundary conditions. The reasoning is inspired by diverse classical fixed point theory, such as the Guo-Krasnosel’skii type fixed point principle and Banach contraction theorem. Additionally, several expressive examples are afforded to show the effectiveness of our theoretical results.\",\"PeriodicalId\":135809,\"journal\":{\"name\":\"Fractional Differential Calculus\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fractional Differential Calculus\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7153/fdc-2021-11-04\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fractional Differential Calculus","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7153/fdc-2021-11-04","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本文建立了一类具有p -拉普拉斯算子的非线性Katugampola分数阶微分方程在混合边界条件下的存在唯一性的重要判据。其推理灵感来自于各种经典不动点理论,如郭-克拉斯诺塞尔斯基不动点原理和巴拿赫收缩定理。此外,还给出了几个富有表现力的例子来证明我们的理论结果的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On criteria of existence for nonlinear Katugampola fractional differential equations with p-Laplacian operator
This paper is devoted to establishing vital criteria of existence and uniqueness for a class of nonlinear Katugampola fractional differential equations (KFDEs) with p -Laplacian operator subjecting to mixed boundary conditions. The reasoning is inspired by diverse classical fixed point theory, such as the Guo-Krasnosel’skii type fixed point principle and Banach contraction theorem. Additionally, several expressive examples are afforded to show the effectiveness of our theoretical results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信