{"title":"基于表面声波装置的微流控无线无源微阀","authors":"D. Dissanayake, S. Al-Sarawi, D. Abbott","doi":"10.1117/12.765011","DOIUrl":null,"url":null,"abstract":"There are vast advantages of using a SAW device based micro-valve in Micro Electro Mechanical Systems (MEMS) and Nano Electro Mechanical Systems (NEMS) such as secure, reliable and low power operation, small size, simplicity in construction and cost effectiveness. In this paper, a Surface Acoustic Wave (SAW) based microvalve that generates micro actuations for micro-fluidic and similar applications is presented. The microvalve is batteryless and can be actuated wirelessly. The security of the device is enhanced by using a coded SAW correlator that is integrated as part of the microvalve. A theoretical analysis of how the actuation mechanism operates is carried out and simulation results of the new micro-valve structure are discussed. ANSYS simulation tool is used to design and simulate the micro-valve structure. Characteristics of the microvalve actuator in terms of displacement for different operating conditions are also discussed.","PeriodicalId":320411,"journal":{"name":"SPIE Micro + Nano Materials, Devices, and Applications","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Surface acoustic wave device based wireless passive microvalve for microfluidic applications\",\"authors\":\"D. Dissanayake, S. Al-Sarawi, D. Abbott\",\"doi\":\"10.1117/12.765011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"There are vast advantages of using a SAW device based micro-valve in Micro Electro Mechanical Systems (MEMS) and Nano Electro Mechanical Systems (NEMS) such as secure, reliable and low power operation, small size, simplicity in construction and cost effectiveness. In this paper, a Surface Acoustic Wave (SAW) based microvalve that generates micro actuations for micro-fluidic and similar applications is presented. The microvalve is batteryless and can be actuated wirelessly. The security of the device is enhanced by using a coded SAW correlator that is integrated as part of the microvalve. A theoretical analysis of how the actuation mechanism operates is carried out and simulation results of the new micro-valve structure are discussed. ANSYS simulation tool is used to design and simulate the micro-valve structure. Characteristics of the microvalve actuator in terms of displacement for different operating conditions are also discussed.\",\"PeriodicalId\":320411,\"journal\":{\"name\":\"SPIE Micro + Nano Materials, Devices, and Applications\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-12-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SPIE Micro + Nano Materials, Devices, and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.765011\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SPIE Micro + Nano Materials, Devices, and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.765011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Surface acoustic wave device based wireless passive microvalve for microfluidic applications
There are vast advantages of using a SAW device based micro-valve in Micro Electro Mechanical Systems (MEMS) and Nano Electro Mechanical Systems (NEMS) such as secure, reliable and low power operation, small size, simplicity in construction and cost effectiveness. In this paper, a Surface Acoustic Wave (SAW) based microvalve that generates micro actuations for micro-fluidic and similar applications is presented. The microvalve is batteryless and can be actuated wirelessly. The security of the device is enhanced by using a coded SAW correlator that is integrated as part of the microvalve. A theoretical analysis of how the actuation mechanism operates is carried out and simulation results of the new micro-valve structure are discussed. ANSYS simulation tool is used to design and simulate the micro-valve structure. Characteristics of the microvalve actuator in terms of displacement for different operating conditions are also discussed.