分层网络环境中基于qos的可伸缩资源分配

Sourav Ghosh, R. Rajkumar, Jeffery P. Hansen, J. Lehoczky
{"title":"分层网络环境中基于qos的可伸缩资源分配","authors":"Sourav Ghosh, R. Rajkumar, Jeffery P. Hansen, J. Lehoczky","doi":"10.1109/RTAS.2005.47","DOIUrl":null,"url":null,"abstract":"In this paper, we study the problem of allocating end-to-end bandwidth to each of multiple traffic flows in a large-scale network. We adopt the QoS-based resource allocation model (Q-RAM) (K-S. Lui et al., 2000), whereby each flow derives an utility based on the amount of its allocated bandwidth. Our goal therefore is to maximize the total utility derived across all network flows. The NP-hard nature of the resource allocation problem is compounded by the need to select an appropriate path between each source-destination pair. We propose a hierarchical decomposition scheme that allows the resource allocation problem to be solved in a decentralized and scalable fashion. The hierarchy we use is based on a (natural) partitioning of the network into subnets, with resource allocation decisions made on a subnet-by-subnet basis. A novel distributed transaction scheme is used to ensure that resource allocations are consistent across all the subnets traversed by each flow. We provide both analytical and experimental evidence to show that our scheme is very scalable and yet does not sacrifice the quality of the allocations.","PeriodicalId":291045,"journal":{"name":"11th IEEE Real Time and Embedded Technology and Applications Symposium","volume":"58 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Scalable QoS-based resource allocation in hierarchical networked environment\",\"authors\":\"Sourav Ghosh, R. Rajkumar, Jeffery P. Hansen, J. Lehoczky\",\"doi\":\"10.1109/RTAS.2005.47\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we study the problem of allocating end-to-end bandwidth to each of multiple traffic flows in a large-scale network. We adopt the QoS-based resource allocation model (Q-RAM) (K-S. Lui et al., 2000), whereby each flow derives an utility based on the amount of its allocated bandwidth. Our goal therefore is to maximize the total utility derived across all network flows. The NP-hard nature of the resource allocation problem is compounded by the need to select an appropriate path between each source-destination pair. We propose a hierarchical decomposition scheme that allows the resource allocation problem to be solved in a decentralized and scalable fashion. The hierarchy we use is based on a (natural) partitioning of the network into subnets, with resource allocation decisions made on a subnet-by-subnet basis. A novel distributed transaction scheme is used to ensure that resource allocations are consistent across all the subnets traversed by each flow. We provide both analytical and experimental evidence to show that our scheme is very scalable and yet does not sacrifice the quality of the allocations.\",\"PeriodicalId\":291045,\"journal\":{\"name\":\"11th IEEE Real Time and Embedded Technology and Applications Symposium\",\"volume\":\"58 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-03-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"11th IEEE Real Time and Embedded Technology and Applications Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RTAS.2005.47\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"11th IEEE Real Time and Embedded Technology and Applications Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RTAS.2005.47","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

在本文中,我们研究了大规模网络中多个流量的端到端带宽分配问题。采用基于qos的资源分配模型(Q-RAM) (K-S)。Lui et al., 2000),其中每个流根据其分配的带宽量派生出一个实用程序。因此,我们的目标是最大化所有网络流的总效用。资源分配问题的np困难特性由于需要在每个源-目标对之间选择适当的路径而变得更加复杂。我们提出了一种分层分解方案,允许以分散和可扩展的方式解决资源分配问题。我们使用的层次结构是基于将网络(自然地)划分为子网,并在逐个子网的基础上做出资源分配决策。使用一种新的分布式事务方案来确保资源分配在每个流所穿越的所有子网之间是一致的。我们提供了分析和实验证据,表明我们的方案是非常可扩展的,但不牺牲分配的质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Scalable QoS-based resource allocation in hierarchical networked environment
In this paper, we study the problem of allocating end-to-end bandwidth to each of multiple traffic flows in a large-scale network. We adopt the QoS-based resource allocation model (Q-RAM) (K-S. Lui et al., 2000), whereby each flow derives an utility based on the amount of its allocated bandwidth. Our goal therefore is to maximize the total utility derived across all network flows. The NP-hard nature of the resource allocation problem is compounded by the need to select an appropriate path between each source-destination pair. We propose a hierarchical decomposition scheme that allows the resource allocation problem to be solved in a decentralized and scalable fashion. The hierarchy we use is based on a (natural) partitioning of the network into subnets, with resource allocation decisions made on a subnet-by-subnet basis. A novel distributed transaction scheme is used to ensure that resource allocations are consistent across all the subnets traversed by each flow. We provide both analytical and experimental evidence to show that our scheme is very scalable and yet does not sacrifice the quality of the allocations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信