旅行时间预测的限制:来自纽约市案例研究的见解

R. Ganti, M. Srivatsa, T. Abdelzaher
{"title":"旅行时间预测的限制:来自纽约市案例研究的见解","authors":"R. Ganti, M. Srivatsa, T. Abdelzaher","doi":"10.1109/ICDCS.2014.25","DOIUrl":null,"url":null,"abstract":"The proliferation of location sensors has resulted in the wide availability of historical location and time data. A prominent use of such data is to develop models to estimate travel-times (between arbitrary points in a city) accurately. The problem of travel-time estimation/prediction has been well studied in the past, where the proposed techniques span a spectrum of statistical methods, such as k-nearest neighbors, Gaussian regression, Artificial Neural Networks, and Support Vector Machines. In this paper, we demonstrate that, contrary to popular intuition, empirical data suggests that simple travel time predictors come very close to the fundamental error bounds achievable in delay prediction. We derive such bounds by estimating entropy that remains in travel time distributions, even after all spatio-temporal delay-influencing factors have been accounted for. Our results are based on analysis of cab traces from New York City, that feature 15 million trips. While we cannot claim generalizability to other cities, the results suggest the diminishing return of complex travel-time predictors due to the inherent nature of uncertainty in trip delays. We demonstrate a simple travel-time predictor, whose error approaches the uncertainty bound. It predicts delay based only on total distance traveled and time-of-day and is close to the optimal solution.","PeriodicalId":170186,"journal":{"name":"2014 IEEE 34th International Conference on Distributed Computing Systems","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"On Limits of Travel Time Predictions: Insights from a New York City Case Study\",\"authors\":\"R. Ganti, M. Srivatsa, T. Abdelzaher\",\"doi\":\"10.1109/ICDCS.2014.25\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The proliferation of location sensors has resulted in the wide availability of historical location and time data. A prominent use of such data is to develop models to estimate travel-times (between arbitrary points in a city) accurately. The problem of travel-time estimation/prediction has been well studied in the past, where the proposed techniques span a spectrum of statistical methods, such as k-nearest neighbors, Gaussian regression, Artificial Neural Networks, and Support Vector Machines. In this paper, we demonstrate that, contrary to popular intuition, empirical data suggests that simple travel time predictors come very close to the fundamental error bounds achievable in delay prediction. We derive such bounds by estimating entropy that remains in travel time distributions, even after all spatio-temporal delay-influencing factors have been accounted for. Our results are based on analysis of cab traces from New York City, that feature 15 million trips. While we cannot claim generalizability to other cities, the results suggest the diminishing return of complex travel-time predictors due to the inherent nature of uncertainty in trip delays. We demonstrate a simple travel-time predictor, whose error approaches the uncertainty bound. It predicts delay based only on total distance traveled and time-of-day and is close to the optimal solution.\",\"PeriodicalId\":170186,\"journal\":{\"name\":\"2014 IEEE 34th International Conference on Distributed Computing Systems\",\"volume\":\"49 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE 34th International Conference on Distributed Computing Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDCS.2014.25\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE 34th International Conference on Distributed Computing Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDCS.2014.25","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

位置传感器的普及使得历史位置和时间数据的可获得性变得广泛。这些数据的一个突出用途是开发模型来准确估计(城市中任意点之间的)旅行时间。旅行时间估计/预测问题在过去已经得到了很好的研究,其中提出的技术涵盖了一系列统计方法,如k近邻、高斯回归、人工神经网络和支持向量机。在本文中,我们证明,与普遍的直觉相反,经验数据表明,简单的旅行时间预测非常接近延迟预测中可实现的基本误差界限。我们通过估计旅行时间分布中剩余的熵来推导出这样的界限,即使在考虑了所有时空延迟影响因素之后。我们的结果是基于对纽约市1500万次出行的出租车痕迹的分析。虽然我们不能将其推广到其他城市,但结果表明,由于旅行延误的固有不确定性,复杂的旅行时间预测的回报正在减少。我们演示了一个简单的旅行时间预测器,其误差接近不确定性界。它仅根据行驶的总距离和一天中的时间来预测延迟,并且接近于最优解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On Limits of Travel Time Predictions: Insights from a New York City Case Study
The proliferation of location sensors has resulted in the wide availability of historical location and time data. A prominent use of such data is to develop models to estimate travel-times (between arbitrary points in a city) accurately. The problem of travel-time estimation/prediction has been well studied in the past, where the proposed techniques span a spectrum of statistical methods, such as k-nearest neighbors, Gaussian regression, Artificial Neural Networks, and Support Vector Machines. In this paper, we demonstrate that, contrary to popular intuition, empirical data suggests that simple travel time predictors come very close to the fundamental error bounds achievable in delay prediction. We derive such bounds by estimating entropy that remains in travel time distributions, even after all spatio-temporal delay-influencing factors have been accounted for. Our results are based on analysis of cab traces from New York City, that feature 15 million trips. While we cannot claim generalizability to other cities, the results suggest the diminishing return of complex travel-time predictors due to the inherent nature of uncertainty in trip delays. We demonstrate a simple travel-time predictor, whose error approaches the uncertainty bound. It predicts delay based only on total distance traveled and time-of-day and is close to the optimal solution.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信