利用胸阻抗检测心肺复苏中呼吸暂停的方法

Enrique Rueda, E. Aramendi, U. Irusta, A. Idris
{"title":"利用胸阻抗检测心肺复苏中呼吸暂停的方法","authors":"Enrique Rueda, E. Aramendi, U. Irusta, A. Idris","doi":"10.22489/CinC.2020.313","DOIUrl":null,"url":null,"abstract":"Cardiac arrest is the main cause of death in developed countries. A good quality cardiopulmonary resuscitation (CPR) is key for the survival of the patient in out-of-hospital cardiac arrest (OHCA), including chest compressions (CCs) and ventilations. Ventilations have been proven to have an important impact in the outcome of the patient, and detecting the CC pauses where ventilations were provided is the aim of this study. An algorithm that automatically detects pauses between sequences of CCs using machine learning techniques is proposed. For this study a set of 102 defibrillator files from OHCA patients that include the thoracic impedance recorded through the defibrillation pads was used. The work has been split into 2 main blocks: a random forest (RF) classifier that classifies 1-s windows as CC/no-CC and an algorithm that sets the beginning and the end of each detected pause. The RF classifier was validated using 10 fold cross-validation method, obtaining a median sensitivity (Se), specificity (Sp) and positive predictive value (PPV) of 95.4/97. 9/94.4 % respectively, for window classification. The pause detector returned median Se/PPV values of 90.0/91.3 % with a median pause delimitation error of 0.04 s and a duration error of 0.04 s.","PeriodicalId":407282,"journal":{"name":"2020 Computing in Cardiology","volume":"478 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Method to Detect Pauses for Ventilation During Cardiopulmonary Resuscitation Using the Thoracic Impedance\",\"authors\":\"Enrique Rueda, E. Aramendi, U. Irusta, A. Idris\",\"doi\":\"10.22489/CinC.2020.313\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cardiac arrest is the main cause of death in developed countries. A good quality cardiopulmonary resuscitation (CPR) is key for the survival of the patient in out-of-hospital cardiac arrest (OHCA), including chest compressions (CCs) and ventilations. Ventilations have been proven to have an important impact in the outcome of the patient, and detecting the CC pauses where ventilations were provided is the aim of this study. An algorithm that automatically detects pauses between sequences of CCs using machine learning techniques is proposed. For this study a set of 102 defibrillator files from OHCA patients that include the thoracic impedance recorded through the defibrillation pads was used. The work has been split into 2 main blocks: a random forest (RF) classifier that classifies 1-s windows as CC/no-CC and an algorithm that sets the beginning and the end of each detected pause. The RF classifier was validated using 10 fold cross-validation method, obtaining a median sensitivity (Se), specificity (Sp) and positive predictive value (PPV) of 95.4/97. 9/94.4 % respectively, for window classification. The pause detector returned median Se/PPV values of 90.0/91.3 % with a median pause delimitation error of 0.04 s and a duration error of 0.04 s.\",\"PeriodicalId\":407282,\"journal\":{\"name\":\"2020 Computing in Cardiology\",\"volume\":\"478 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 Computing in Cardiology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22489/CinC.2020.313\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 Computing in Cardiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22489/CinC.2020.313","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

心脏骤停是发达国家的主要死亡原因。高质量的心肺复苏(CPR)是院外心脏骤停(OHCA)患者生存的关键,包括胸外按压(CCs)和通气。通气已被证明对患者的预后有重要影响,检测提供通气的CC暂停是本研究的目的。提出了一种使用机器学习技术自动检测cc序列之间暂停的算法。本研究使用了一组来自OHCA患者的102个除颤器文件,其中包括通过除颤垫记录的胸阻抗。这项工作被分成两个主要部分:一个随机森林(RF)分类器,它将1- 5个窗口分类为CC/no-CC,一个算法设置每个检测到的暂停的开始和结束。采用10倍交叉验证法对RF分类器进行验证,获得中位灵敏度(Se)、特异性(Sp)和阳性预测值(PPV)为95.4/97。9/ 94.4%,用于窗口分类。暂停检测器返回的Se/PPV中值为90.0/ 91.3%,暂停定界误差中值为0.04 s,持续时间误差中值为0.04 s。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Method to Detect Pauses for Ventilation During Cardiopulmonary Resuscitation Using the Thoracic Impedance
Cardiac arrest is the main cause of death in developed countries. A good quality cardiopulmonary resuscitation (CPR) is key for the survival of the patient in out-of-hospital cardiac arrest (OHCA), including chest compressions (CCs) and ventilations. Ventilations have been proven to have an important impact in the outcome of the patient, and detecting the CC pauses where ventilations were provided is the aim of this study. An algorithm that automatically detects pauses between sequences of CCs using machine learning techniques is proposed. For this study a set of 102 defibrillator files from OHCA patients that include the thoracic impedance recorded through the defibrillation pads was used. The work has been split into 2 main blocks: a random forest (RF) classifier that classifies 1-s windows as CC/no-CC and an algorithm that sets the beginning and the end of each detected pause. The RF classifier was validated using 10 fold cross-validation method, obtaining a median sensitivity (Se), specificity (Sp) and positive predictive value (PPV) of 95.4/97. 9/94.4 % respectively, for window classification. The pause detector returned median Se/PPV values of 90.0/91.3 % with a median pause delimitation error of 0.04 s and a duration error of 0.04 s.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信