Abhinav Garg, Dhananjaya N. Gowda, Ankur Kumar, Kwangyoun Kim, Mehul Kumar, Chanwoo Kim
{"title":"基于注意力的在线编码器-解码器模型的改进多阶段训练","authors":"Abhinav Garg, Dhananjaya N. Gowda, Ankur Kumar, Kwangyoun Kim, Mehul Kumar, Chanwoo Kim","doi":"10.1109/ASRU46091.2019.9003936","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a refined multi-stage multi-task training strategy to improve the performance of online attention-based encoder-decoder (AED) models. A three-stage training based on three levels of architectural granularity namely, character encoder, byte pair encoding (BPE) based encoder, and attention decoder, is proposed. Also, multi-task learning based on two-levels of linguistic granularity namely, character and BPE, is used. We explore different pre-training strategies for the encoders including transfer learning from a bidirectional encoder. Our encoder-decoder models with online attention show ~35% and ~10% relative improvement over their baselines for smaller and bigger models, respectively. Our models achieve a word error rate (WER) of 5.04% and 4.48% on the Librispeech test-clean data for the smaller and bigger models respectively after fusion with long short-term memory (LSTM) based external language model (LM).","PeriodicalId":150913,"journal":{"name":"2019 IEEE Automatic Speech Recognition and Understanding Workshop (ASRU)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Improved Multi-Stage Training of Online Attention-Based Encoder-Decoder Models\",\"authors\":\"Abhinav Garg, Dhananjaya N. Gowda, Ankur Kumar, Kwangyoun Kim, Mehul Kumar, Chanwoo Kim\",\"doi\":\"10.1109/ASRU46091.2019.9003936\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a refined multi-stage multi-task training strategy to improve the performance of online attention-based encoder-decoder (AED) models. A three-stage training based on three levels of architectural granularity namely, character encoder, byte pair encoding (BPE) based encoder, and attention decoder, is proposed. Also, multi-task learning based on two-levels of linguistic granularity namely, character and BPE, is used. We explore different pre-training strategies for the encoders including transfer learning from a bidirectional encoder. Our encoder-decoder models with online attention show ~35% and ~10% relative improvement over their baselines for smaller and bigger models, respectively. Our models achieve a word error rate (WER) of 5.04% and 4.48% on the Librispeech test-clean data for the smaller and bigger models respectively after fusion with long short-term memory (LSTM) based external language model (LM).\",\"PeriodicalId\":150913,\"journal\":{\"name\":\"2019 IEEE Automatic Speech Recognition and Understanding Workshop (ASRU)\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE Automatic Speech Recognition and Understanding Workshop (ASRU)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ASRU46091.2019.9003936\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Automatic Speech Recognition and Understanding Workshop (ASRU)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASRU46091.2019.9003936","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Improved Multi-Stage Training of Online Attention-Based Encoder-Decoder Models
In this paper, we propose a refined multi-stage multi-task training strategy to improve the performance of online attention-based encoder-decoder (AED) models. A three-stage training based on three levels of architectural granularity namely, character encoder, byte pair encoding (BPE) based encoder, and attention decoder, is proposed. Also, multi-task learning based on two-levels of linguistic granularity namely, character and BPE, is used. We explore different pre-training strategies for the encoders including transfer learning from a bidirectional encoder. Our encoder-decoder models with online attention show ~35% and ~10% relative improvement over their baselines for smaller and bigger models, respectively. Our models achieve a word error rate (WER) of 5.04% and 4.48% on the Librispeech test-clean data for the smaller and bigger models respectively after fusion with long short-term memory (LSTM) based external language model (LM).