检测视频/音频流数据包流,用于非侵入式QoS/QoE监控

S. Galetto, P. Bottaro, C. Carrara, F. Secco, A. Guidolin, E. Targa, C. Narduzzi, G. Giorgi
{"title":"检测视频/音频流数据包流,用于非侵入式QoS/QoE监控","authors":"S. Galetto, P. Bottaro, C. Carrara, F. Secco, A. Guidolin, E. Targa, C. Narduzzi, G. Giorgi","doi":"10.1109/IWMN.2017.8078403","DOIUrl":null,"url":null,"abstract":"Streaming media applications generate a sizable part of network traffic and represent a significant proportion of network providers' income. The commitment to user satisfaction can be summarized by different concepts, content providers emphasizing quality of experience (QoE), whereas network providers are more focused on quality of service (QoS). Measuring QoS parameters, and understanding the relationship between the two, is essential to enable network tuning for enhanced QoE. Analysis of actual streaming dynamics and detection of impairments require the ability to discriminate between audio and video packet flows. For the purpose we present a cross-layer analysis based on the study of packet flow features obtained by implementing a Support Vector Machine. This paper presents results of a study supported by the use of nTh HighSee, a non-intrusive QoS monitoring tool, where approaches to video/audio detection have been investigated and tested.","PeriodicalId":201479,"journal":{"name":"2017 IEEE International Workshop on Measurement and Networking (M&N)","volume":"77 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Detection of video/audio streaming packet flows for non-intrusive QoS/QoE monitoring\",\"authors\":\"S. Galetto, P. Bottaro, C. Carrara, F. Secco, A. Guidolin, E. Targa, C. Narduzzi, G. Giorgi\",\"doi\":\"10.1109/IWMN.2017.8078403\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Streaming media applications generate a sizable part of network traffic and represent a significant proportion of network providers' income. The commitment to user satisfaction can be summarized by different concepts, content providers emphasizing quality of experience (QoE), whereas network providers are more focused on quality of service (QoS). Measuring QoS parameters, and understanding the relationship between the two, is essential to enable network tuning for enhanced QoE. Analysis of actual streaming dynamics and detection of impairments require the ability to discriminate between audio and video packet flows. For the purpose we present a cross-layer analysis based on the study of packet flow features obtained by implementing a Support Vector Machine. This paper presents results of a study supported by the use of nTh HighSee, a non-intrusive QoS monitoring tool, where approaches to video/audio detection have been investigated and tested.\",\"PeriodicalId\":201479,\"journal\":{\"name\":\"2017 IEEE International Workshop on Measurement and Networking (M&N)\",\"volume\":\"77 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE International Workshop on Measurement and Networking (M&N)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IWMN.2017.8078403\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Workshop on Measurement and Networking (M&N)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWMN.2017.8078403","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

流媒体应用程序产生了相当大一部分网络流量,并代表了网络提供商收入的很大一部分。对用户满意度的承诺可以用不同的概念来概括,内容提供商强调体验质量(QoE),而网络提供商更关注服务质量(QoS)。测量QoS参数并理解两者之间的关系对于实现网络调优以增强QoE至关重要。分析实际的流动态和检测损伤需要区分音频和视频数据包流的能力。为此,我们提出了一种基于支持向量机实现的数据包流特征研究的跨层分析方法。本文介绍了一项由nTh HighSee(一种非侵入性QoS监控工具)支持的研究结果,其中对视频/音频检测方法进行了调查和测试。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Detection of video/audio streaming packet flows for non-intrusive QoS/QoE monitoring
Streaming media applications generate a sizable part of network traffic and represent a significant proportion of network providers' income. The commitment to user satisfaction can be summarized by different concepts, content providers emphasizing quality of experience (QoE), whereas network providers are more focused on quality of service (QoS). Measuring QoS parameters, and understanding the relationship between the two, is essential to enable network tuning for enhanced QoE. Analysis of actual streaming dynamics and detection of impairments require the ability to discriminate between audio and video packet flows. For the purpose we present a cross-layer analysis based on the study of packet flow features obtained by implementing a Support Vector Machine. This paper presents results of a study supported by the use of nTh HighSee, a non-intrusive QoS monitoring tool, where approaches to video/audio detection have been investigated and tested.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信