二阶线性差分方程解的界

F. Olver
{"title":"二阶线性差分方程解的界","authors":"F. Olver","doi":"10.6028/JRES.071B.021","DOIUrl":null,"url":null,"abstract":"Simple bounds are established for the solutions of second-order homogeneous linear difference equations in ranges in which the solutions are exponential in character. The results are applied to a recent algorithm for the computation of subdominant solutions of second-order linear difference equations, homogeneous or otherwise. Strict and extremely realistic bounds are obtained for the truncation error associated with the algorithm in a number of examples, including Anger·Weber functions, Struve functions , and the solution of a differential equation in Chebyshev series.","PeriodicalId":408709,"journal":{"name":"Journal of Research of the National Bureau of Standards Section B Mathematics and Mathematical Physics","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1967-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":"{\"title\":\"Bounds for the solutions of second-order linear difference equations\",\"authors\":\"F. Olver\",\"doi\":\"10.6028/JRES.071B.021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Simple bounds are established for the solutions of second-order homogeneous linear difference equations in ranges in which the solutions are exponential in character. The results are applied to a recent algorithm for the computation of subdominant solutions of second-order linear difference equations, homogeneous or otherwise. Strict and extremely realistic bounds are obtained for the truncation error associated with the algorithm in a number of examples, including Anger·Weber functions, Struve functions , and the solution of a differential equation in Chebyshev series.\",\"PeriodicalId\":408709,\"journal\":{\"name\":\"Journal of Research of the National Bureau of Standards Section B Mathematics and Mathematical Physics\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1967-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"22\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Research of the National Bureau of Standards Section B Mathematics and Mathematical Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.6028/JRES.071B.021\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Research of the National Bureau of Standards Section B Mathematics and Mathematical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.6028/JRES.071B.021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

摘要

建立了二阶齐次线性差分方程解在指数范围内的简单界。这些结果被应用于计算二阶齐次或非齐次线性差分方程的次优解的最新算法。在Anger·Weber函数、Struve函数和Chebyshev级数微分方程的解等实例中,得到了与该算法相关的截断误差的严格且极其现实的边界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bounds for the solutions of second-order linear difference equations
Simple bounds are established for the solutions of second-order homogeneous linear difference equations in ranges in which the solutions are exponential in character. The results are applied to a recent algorithm for the computation of subdominant solutions of second-order linear difference equations, homogeneous or otherwise. Strict and extremely realistic bounds are obtained for the truncation error associated with the algorithm in a number of examples, including Anger·Weber functions, Struve functions , and the solution of a differential equation in Chebyshev series.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信