一种新的基于形状的物体识别相对方向特征

Yanyun Zhao, A. Cai
{"title":"一种新的基于形状的物体识别相对方向特征","authors":"Yanyun Zhao, A. Cai","doi":"10.1109/ICNIDC.2009.5360852","DOIUrl":null,"url":null,"abstract":"We propose a novel relative orientation feature (ROF) to represent the contour or skeleton of a two-dimensional object. With the aid of ROF, the shapes of two objects with fine structures can be compared. Matching with ROF is invariant with respect to translation, rotation and scaling transforms. Experimental results on hand gesture recognition demonstrate the effectiveness and efficiency of ROF with the identification rate of 98% and the average computational time less than 0.45ms/frame.","PeriodicalId":127306,"journal":{"name":"2009 IEEE International Conference on Network Infrastructure and Digital Content","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"A novel relative orientation feature for shape-based object recognition\",\"authors\":\"Yanyun Zhao, A. Cai\",\"doi\":\"10.1109/ICNIDC.2009.5360852\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a novel relative orientation feature (ROF) to represent the contour or skeleton of a two-dimensional object. With the aid of ROF, the shapes of two objects with fine structures can be compared. Matching with ROF is invariant with respect to translation, rotation and scaling transforms. Experimental results on hand gesture recognition demonstrate the effectiveness and efficiency of ROF with the identification rate of 98% and the average computational time less than 0.45ms/frame.\",\"PeriodicalId\":127306,\"journal\":{\"name\":\"2009 IEEE International Conference on Network Infrastructure and Digital Content\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IEEE International Conference on Network Infrastructure and Digital Content\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICNIDC.2009.5360852\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE International Conference on Network Infrastructure and Digital Content","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNIDC.2009.5360852","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

我们提出了一种新的相对方向特征(ROF)来表示二维物体的轮廓或骨架。借助ROF,可以比较两个具有精细结构的物体的形状。与ROF的匹配在平移、旋转和缩放变换方面是不变的。手势识别实验结果证明了ROF算法的有效性和有效性,识别率达到98%,平均计算时间小于0.45ms/帧。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A novel relative orientation feature for shape-based object recognition
We propose a novel relative orientation feature (ROF) to represent the contour or skeleton of a two-dimensional object. With the aid of ROF, the shapes of two objects with fine structures can be compared. Matching with ROF is invariant with respect to translation, rotation and scaling transforms. Experimental results on hand gesture recognition demonstrate the effectiveness and efficiency of ROF with the identification rate of 98% and the average computational time less than 0.45ms/frame.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信