一些阴影距离图的析取全支配

C. Çiftçi
{"title":"一些阴影距离图的析取全支配","authors":"C. Çiftçi","doi":"10.33401/fujma.790046","DOIUrl":null,"url":null,"abstract":"Let $ G $ be a graph having vertex set $ V(G) $. For $ S\\subseteq V(G) $, if each vertex is adjacent to a vertex in $ S $ or has at least two vertices in $ S $ at distance two from it, then the set $ S $ is a disjunctive total dominating set of $ G $. The disjunctive total domination number is the minimum cardinality of such a set. In this work, we discuss the disjunctive total domination of shadow distance graphs of some graphs such as cycle, path, star, complete bipartite and wheel graphs.","PeriodicalId":199091,"journal":{"name":"Fundamental Journal of Mathematics and Applications","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Disjunctive Total Domination of Some Shadow Distance Graphs\",\"authors\":\"C. Çiftçi\",\"doi\":\"10.33401/fujma.790046\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $ G $ be a graph having vertex set $ V(G) $. For $ S\\\\subseteq V(G) $, if each vertex is adjacent to a vertex in $ S $ or has at least two vertices in $ S $ at distance two from it, then the set $ S $ is a disjunctive total dominating set of $ G $. The disjunctive total domination number is the minimum cardinality of such a set. In this work, we discuss the disjunctive total domination of shadow distance graphs of some graphs such as cycle, path, star, complete bipartite and wheel graphs.\",\"PeriodicalId\":199091,\"journal\":{\"name\":\"Fundamental Journal of Mathematics and Applications\",\"volume\":\"51 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fundamental Journal of Mathematics and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33401/fujma.790046\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fundamental Journal of Mathematics and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33401/fujma.790046","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

设$ G $是一个顶点集$ V(G) $的图。对于$ S\subseteq V(G) $,如果每个顶点与$ S $中的一个顶点相邻,或者在$ S $中至少有两个与它的距离为2的顶点,则集合$ S $是$ G $的析取总支配集。析取的总支配数是这样一个集合的最小基数。本文讨论了循环图、路径图、星图、完全二部图和轮图的阴影距离图的析取全支配性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Disjunctive Total Domination of Some Shadow Distance Graphs
Let $ G $ be a graph having vertex set $ V(G) $. For $ S\subseteq V(G) $, if each vertex is adjacent to a vertex in $ S $ or has at least two vertices in $ S $ at distance two from it, then the set $ S $ is a disjunctive total dominating set of $ G $. The disjunctive total domination number is the minimum cardinality of such a set. In this work, we discuss the disjunctive total domination of shadow distance graphs of some graphs such as cycle, path, star, complete bipartite and wheel graphs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信