HMM-Boost:通过监督隐马尔可夫模型改进的时间序列状态预测:癫痫发作和复杂护理管理的案例研究

Georgios Mavroudeas, M. Magdon-Ismail, Xiao Shou, Kristin P. Bennett
{"title":"HMM-Boost:通过监督隐马尔可夫模型改进的时间序列状态预测:癫痫发作和复杂护理管理的案例研究","authors":"Georgios Mavroudeas, M. Magdon-Ismail, Xiao Shou, Kristin P. Bennett","doi":"10.1109/ICDMW58026.2022.00050","DOIUrl":null,"url":null,"abstract":"We give a method for time series state prediction with a lazy teacher who only partially labels states, in particular only those states of an extreme nature. Hence, the labeling is not only lazy, but biased. Our method has two stages: (i) Impute new state labels for unlabeled states using a relabeling Hidden Markov Model, and in so doing treat the labeling bias. (ii) Use a supervised framework with the relabeled data. Our method is general, agnostic to the application and the supervised framework being used. We show compelling results in synthetic data and two real applications: epilepsy and complex care management. Our HMM-relabeling approach allows us to tackle time series with extremely sparse labels.","PeriodicalId":146687,"journal":{"name":"2022 IEEE International Conference on Data Mining Workshops (ICDMW)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"HMM-Boost: Improved Time Series State Prediction Via Supervised Hidden Markov Models: Case Studies in Epileptic Seizure and Complex Care Management\",\"authors\":\"Georgios Mavroudeas, M. Magdon-Ismail, Xiao Shou, Kristin P. Bennett\",\"doi\":\"10.1109/ICDMW58026.2022.00050\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We give a method for time series state prediction with a lazy teacher who only partially labels states, in particular only those states of an extreme nature. Hence, the labeling is not only lazy, but biased. Our method has two stages: (i) Impute new state labels for unlabeled states using a relabeling Hidden Markov Model, and in so doing treat the labeling bias. (ii) Use a supervised framework with the relabeled data. Our method is general, agnostic to the application and the supervised framework being used. We show compelling results in synthetic data and two real applications: epilepsy and complex care management. Our HMM-relabeling approach allows us to tackle time series with extremely sparse labels.\",\"PeriodicalId\":146687,\"journal\":{\"name\":\"2022 IEEE International Conference on Data Mining Workshops (ICDMW)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Conference on Data Mining Workshops (ICDMW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDMW58026.2022.00050\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Data Mining Workshops (ICDMW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDMW58026.2022.00050","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们给出了一个时间序列状态预测的方法,一个懒惰的老师只部分标记状态,特别是那些极端性质的状态。因此,贴标签不仅是懒惰的,而且是有偏见的。我们的方法有两个阶段:(i)使用重新标记的隐马尔可夫模型为未标记的状态输入新的状态标签,并在这样做时处理标记偏差。(ii)对重新标记的数据使用监督框架。我们的方法是通用的,与应用程序和所使用的监督框架无关。我们在合成数据和两个实际应用方面显示了令人信服的结果:癫痫和复杂的护理管理。我们的hmm重新标记方法允许我们处理具有极其稀疏标签的时间序列。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
HMM-Boost: Improved Time Series State Prediction Via Supervised Hidden Markov Models: Case Studies in Epileptic Seizure and Complex Care Management
We give a method for time series state prediction with a lazy teacher who only partially labels states, in particular only those states of an extreme nature. Hence, the labeling is not only lazy, but biased. Our method has two stages: (i) Impute new state labels for unlabeled states using a relabeling Hidden Markov Model, and in so doing treat the labeling bias. (ii) Use a supervised framework with the relabeled data. Our method is general, agnostic to the application and the supervised framework being used. We show compelling results in synthetic data and two real applications: epilepsy and complex care management. Our HMM-relabeling approach allows us to tackle time series with extremely sparse labels.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信