一种新的图像数据压缩和纹理检测的矢量量化方法

L. Cohen
{"title":"一种新的图像数据压缩和纹理检测的矢量量化方法","authors":"L. Cohen","doi":"10.1109/ICPR.1988.28484","DOIUrl":null,"url":null,"abstract":"A method of image data compression based on vector quantization (VQ) is described. Instead of quantizing blocks of the image by the vectors, the vectors are first rescaled to be the closest to the block. The most representative patterns of the image are sought, with two blocks having the same pattern if they are similar after a scaling. A method of VQ is introduced using a smaller image which captures all the useful information instead of separated quanta. This can be applied to picture encoding and texture detection.<<ETX>>","PeriodicalId":314236,"journal":{"name":"[1988 Proceedings] 9th International Conference on Pattern Recognition","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1988-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A new approach of vector quantization for image data compression and texture detection\",\"authors\":\"L. Cohen\",\"doi\":\"10.1109/ICPR.1988.28484\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A method of image data compression based on vector quantization (VQ) is described. Instead of quantizing blocks of the image by the vectors, the vectors are first rescaled to be the closest to the block. The most representative patterns of the image are sought, with two blocks having the same pattern if they are similar after a scaling. A method of VQ is introduced using a smaller image which captures all the useful information instead of separated quanta. This can be applied to picture encoding and texture detection.<<ETX>>\",\"PeriodicalId\":314236,\"journal\":{\"name\":\"[1988 Proceedings] 9th International Conference on Pattern Recognition\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1988-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"[1988 Proceedings] 9th International Conference on Pattern Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICPR.1988.28484\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"[1988 Proceedings] 9th International Conference on Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPR.1988.28484","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

提出了一种基于矢量量化(VQ)的图像数据压缩方法。不是通过矢量量化图像的块,而是首先将矢量重新缩放为最接近块的。寻找图像中最具代表性的模式,如果两个块在缩放后相似,则具有相同的模式。介绍了一种利用小图像捕获所有有用信息而不是分离量子的VQ方法。这可以应用于图片编码和纹理检测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A new approach of vector quantization for image data compression and texture detection
A method of image data compression based on vector quantization (VQ) is described. Instead of quantizing blocks of the image by the vectors, the vectors are first rescaled to be the closest to the block. The most representative patterns of the image are sought, with two blocks having the same pattern if they are similar after a scaling. A method of VQ is introduced using a smaller image which captures all the useful information instead of separated quanta. This can be applied to picture encoding and texture detection.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信