{"title":"一种改进的多通道耦合系统MIMO正弦振动最优自适应控制方法","authors":"Chao Li, Zhang-wei Chen, Hongfei Zu, Yugang Zhao","doi":"10.1115/IMECE2018-86983","DOIUrl":null,"url":null,"abstract":"This paper proposes an improved optimal adaptive control algorithm to accelerate convergence for sine control of general multichannel coupled system, as well as enhance the stability. First of all, the convergence of traditional multi-input multi-output (MIMO) sine control method is analytically investigated in the presence of frequency response function (FRF) error. Then, the controller with the improved optimal adaptive control algorithm is developed, where a high-precision algorithm for amplitude and phase estimation is proposed to guarantee the accuracy of the response vector calculation. Numerical simulation results show that the proposed method possess excellent performance with fast convergence rate and strong robustness.","PeriodicalId":197121,"journal":{"name":"Volume 11: Acoustics, Vibration, and Phononics","volume":"108 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"An Improved Optimal Adaptive Control Method for MIMO Sine Vibration Control of a Multichannel Coupled System\",\"authors\":\"Chao Li, Zhang-wei Chen, Hongfei Zu, Yugang Zhao\",\"doi\":\"10.1115/IMECE2018-86983\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes an improved optimal adaptive control algorithm to accelerate convergence for sine control of general multichannel coupled system, as well as enhance the stability. First of all, the convergence of traditional multi-input multi-output (MIMO) sine control method is analytically investigated in the presence of frequency response function (FRF) error. Then, the controller with the improved optimal adaptive control algorithm is developed, where a high-precision algorithm for amplitude and phase estimation is proposed to guarantee the accuracy of the response vector calculation. Numerical simulation results show that the proposed method possess excellent performance with fast convergence rate and strong robustness.\",\"PeriodicalId\":197121,\"journal\":{\"name\":\"Volume 11: Acoustics, Vibration, and Phononics\",\"volume\":\"108 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 11: Acoustics, Vibration, and Phononics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/IMECE2018-86983\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 11: Acoustics, Vibration, and Phononics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/IMECE2018-86983","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An Improved Optimal Adaptive Control Method for MIMO Sine Vibration Control of a Multichannel Coupled System
This paper proposes an improved optimal adaptive control algorithm to accelerate convergence for sine control of general multichannel coupled system, as well as enhance the stability. First of all, the convergence of traditional multi-input multi-output (MIMO) sine control method is analytically investigated in the presence of frequency response function (FRF) error. Then, the controller with the improved optimal adaptive control algorithm is developed, where a high-precision algorithm for amplitude and phase estimation is proposed to guarantee the accuracy of the response vector calculation. Numerical simulation results show that the proposed method possess excellent performance with fast convergence rate and strong robustness.