Weksi Budiaji, Juwarin Pancawati
{"title":"Medoid-based Clustering pada Kecamatan di Kabupaten Lebak dan Pandeglang Provinsi Banten Berdasarkan Trilogi Ketahanan Pangan","authors":"Weksi Budiaji, Juwarin Pancawati","doi":"10.36456/jstat.vol15.no1.a5468","DOIUrl":null,"url":null,"abstract":"Lebak and Pandeglang Regions in Banten Province have a high stunting prevalence of children under 5 years old and have the lowest value of food security index among regions in Banten Province. Cluster analysis to group districts in Lebak and Padeglang Regions is indispensable to characterize the district members in those two regions. The variables applied to calculate distance between districts in  a simple k-medoid clustering were trilogy of food security namely the availability, access, and utility of the food from Bureau of Statistics of Lebak and Pandeglang Regions 2019 data. The distances were varied among Euclidean, squared Euclidean, and Manhattan distances. The clustering result was then validated via consensus clustering and internal validation. The suitable number of clusters was four defined as the available and access cluster (cluster 1), the access cluster (cluster 2), the vulnerable cluster (cluster 3), and the available cluster (cluster 4). The cluster 3 as the vulnerable cluster should be focused on because it consists of 38% from overall districts in Lebak and Banten Regions.","PeriodicalId":118320,"journal":{"name":"J Statistika: Jurnal Ilmiah Teori dan Aplikasi Statistika","volume":"183 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"J Statistika: Jurnal Ilmiah Teori dan Aplikasi Statistika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36456/jstat.vol15.no1.a5468","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

万丹省Lebak和pangdeglang地区5岁以下儿童发育迟缓患病率较高,粮食安全指数在万丹省各地区中最低。对勒巴克和八德郎地区进行聚类分析,对这两个地区的地区成员进行分类是必不可少的。在简单的k-介质聚类中,用于计算地区之间距离的变量是粮食安全三部曲,即来自勒巴克和盘德郎地区统计局2019年数据的粮食可获得性、可获得性和效用。距离在欧几里得距离、平方欧几里得距离和曼哈顿距离之间变化。然后通过共识聚类和内部验证对聚类结果进行验证。适宜的集群数量为4个,分别为可用和可接入集群(集群1)、可接入集群(集群2)、易受害集群(集群3)和可用集群(集群4)。应重点关注集群3作为易受害集群,因为它占勒巴克和万丹地区全部地区的38%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Medoid-based Clustering pada Kecamatan di Kabupaten Lebak dan Pandeglang Provinsi Banten Berdasarkan Trilogi Ketahanan Pangan
Lebak and Pandeglang Regions in Banten Province have a high stunting prevalence of children under 5 years old and have the lowest value of food security index among regions in Banten Province. Cluster analysis to group districts in Lebak and Padeglang Regions is indispensable to characterize the district members in those two regions. The variables applied to calculate distance between districts in  a simple k-medoid clustering were trilogy of food security namely the availability, access, and utility of the food from Bureau of Statistics of Lebak and Pandeglang Regions 2019 data. The distances were varied among Euclidean, squared Euclidean, and Manhattan distances. The clustering result was then validated via consensus clustering and internal validation. The suitable number of clusters was four defined as the available and access cluster (cluster 1), the access cluster (cluster 2), the vulnerable cluster (cluster 3), and the available cluster (cluster 4). The cluster 3 as the vulnerable cluster should be focused on because it consists of 38% from overall districts in Lebak and Banten Regions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信