多跳无线网络的联合随机线性网络编码和交错卷积编码

M. Susanto, Yim-Fun Hu, P. Pillai
{"title":"多跳无线网络的联合随机线性网络编码和交错卷积编码","authors":"M. Susanto, Yim-Fun Hu, P. Pillai","doi":"10.1109/WAINA.2013.156","DOIUrl":null,"url":null,"abstract":"Error control techniques are designed to ensure reliable data transfer over unreliable communication channels that are frequently subjected to channel errors. In this paper, the effect of applying a convolution code to the Scattered Random Network Coding (SRNC) scheme over a multi-hop wireless channel was studied. An interleaver was implemented for bit scattering in the SRNC with the purpose of dividing the encoded data into protected blocks and vulnerable blocks to achieve error diversity in one modulation symbol while randomising errored bits in both blocks. By combining the interleaver with the convolution encoder, the network decoder in the receiver would have enough number of correctly received network coded blocks to perform the decoding process efficiently. Extensive simulations were carried out to study the performance of three systems: 1) SRNC with convolutional encoding, 2) SRNC; and 3) A system without convolutional encoding nor interleaving. Simulation results in terms of block error rate for a 2-hop wireless transmission scenario over an Additive White Gaussian Noise (AWGN) channel were presented. Results showed that the system with interleaving and convolutional code achieved better performance with coding gain of at least 1.29 dB and 2.08 dB on average when the block error rate is 0.01 when compared with system II and system III respectively.","PeriodicalId":359251,"journal":{"name":"2013 27th International Conference on Advanced Information Networking and Applications Workshops","volume":"67 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Joint Random Linear Network Coding and Convolutional Code with Interleaving for Multihop Wireless Network\",\"authors\":\"M. Susanto, Yim-Fun Hu, P. Pillai\",\"doi\":\"10.1109/WAINA.2013.156\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Error control techniques are designed to ensure reliable data transfer over unreliable communication channels that are frequently subjected to channel errors. In this paper, the effect of applying a convolution code to the Scattered Random Network Coding (SRNC) scheme over a multi-hop wireless channel was studied. An interleaver was implemented for bit scattering in the SRNC with the purpose of dividing the encoded data into protected blocks and vulnerable blocks to achieve error diversity in one modulation symbol while randomising errored bits in both blocks. By combining the interleaver with the convolution encoder, the network decoder in the receiver would have enough number of correctly received network coded blocks to perform the decoding process efficiently. Extensive simulations were carried out to study the performance of three systems: 1) SRNC with convolutional encoding, 2) SRNC; and 3) A system without convolutional encoding nor interleaving. Simulation results in terms of block error rate for a 2-hop wireless transmission scenario over an Additive White Gaussian Noise (AWGN) channel were presented. Results showed that the system with interleaving and convolutional code achieved better performance with coding gain of at least 1.29 dB and 2.08 dB on average when the block error rate is 0.01 when compared with system II and system III respectively.\",\"PeriodicalId\":359251,\"journal\":{\"name\":\"2013 27th International Conference on Advanced Information Networking and Applications Workshops\",\"volume\":\"67 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-03-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 27th International Conference on Advanced Information Networking and Applications Workshops\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WAINA.2013.156\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 27th International Conference on Advanced Information Networking and Applications Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WAINA.2013.156","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

错误控制技术的设计是为了确保在不可靠的通信信道上可靠地传输数据,这些信道经常受到信道错误的影响。本文研究了在多跳无线信道上使用卷积码对分散随机网络编码(SRNC)方案的影响。在SRNC中实现了位散射的交织器,目的是将编码数据分为保护块和脆弱块,实现一个调制符号的错误分集,同时将两个块中的错误位随机化。通过将交织器与卷积编码器相结合,接收器中的网络解码器将有足够数量的正确接收的网络编码块来有效地执行解码过程。通过大量的仿真研究了三种系统的性能:1)卷积编码的SRNC, 2) SRNC;3)没有卷积编码和交错的系统。给出了加性高斯白噪声(AWGN)信道下2跳无线传输场景的分组误码率仿真结果。结果表明,与系统II和系统III相比,在分组错误率为0.01的情况下,交错和卷积编码系统的编码增益平均至少为1.29 dB和2.08 dB,具有更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Joint Random Linear Network Coding and Convolutional Code with Interleaving for Multihop Wireless Network
Error control techniques are designed to ensure reliable data transfer over unreliable communication channels that are frequently subjected to channel errors. In this paper, the effect of applying a convolution code to the Scattered Random Network Coding (SRNC) scheme over a multi-hop wireless channel was studied. An interleaver was implemented for bit scattering in the SRNC with the purpose of dividing the encoded data into protected blocks and vulnerable blocks to achieve error diversity in one modulation symbol while randomising errored bits in both blocks. By combining the interleaver with the convolution encoder, the network decoder in the receiver would have enough number of correctly received network coded blocks to perform the decoding process efficiently. Extensive simulations were carried out to study the performance of three systems: 1) SRNC with convolutional encoding, 2) SRNC; and 3) A system without convolutional encoding nor interleaving. Simulation results in terms of block error rate for a 2-hop wireless transmission scenario over an Additive White Gaussian Noise (AWGN) channel were presented. Results showed that the system with interleaving and convolutional code achieved better performance with coding gain of at least 1.29 dB and 2.08 dB on average when the block error rate is 0.01 when compared with system II and system III respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信