自动变音符恢复现代标准阿拉伯语文本

Ayman A. Zayyan, M. Elmahdy, Husniza binti Husni, J. A. Al Ja'am
{"title":"自动变音符恢复现代标准阿拉伯语文本","authors":"Ayman A. Zayyan, M. Elmahdy, Husniza binti Husni, J. A. Al Ja'am","doi":"10.1109/ISCAIE.2016.7575067","DOIUrl":null,"url":null,"abstract":"In this paper, the problem of missing diacritic marks in most of Arabic written resources is investigated. Our aim is to implement a scalable and extensible platform to automatically restore missing diacritic marks for Modern Standard Arabic text. Different rule-based and statistical techniques are proposed. These include: morphological analyzer-based, maximum likelihood estimate, and statistical n-gram models. Diacritization accuracy of each technique was evaluated based on Diacritic Error Rate (DER) and Word Error Rate (WER). The proposed platform includes helper tools for text preprocessing and encoding conversion. It yielded a WER of 7.1% and DER of 3.9%. When the case ending was ignored, the platform yielded a WER and DER of 5.1% and 2.7%, respectively.","PeriodicalId":412517,"journal":{"name":"2016 IEEE Symposium on Computer Applications & Industrial Electronics (ISCAIE)","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Automatic diacritics restoration for modern standard arabic text\",\"authors\":\"Ayman A. Zayyan, M. Elmahdy, Husniza binti Husni, J. A. Al Ja'am\",\"doi\":\"10.1109/ISCAIE.2016.7575067\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, the problem of missing diacritic marks in most of Arabic written resources is investigated. Our aim is to implement a scalable and extensible platform to automatically restore missing diacritic marks for Modern Standard Arabic text. Different rule-based and statistical techniques are proposed. These include: morphological analyzer-based, maximum likelihood estimate, and statistical n-gram models. Diacritization accuracy of each technique was evaluated based on Diacritic Error Rate (DER) and Word Error Rate (WER). The proposed platform includes helper tools for text preprocessing and encoding conversion. It yielded a WER of 7.1% and DER of 3.9%. When the case ending was ignored, the platform yielded a WER and DER of 5.1% and 2.7%, respectively.\",\"PeriodicalId\":412517,\"journal\":{\"name\":\"2016 IEEE Symposium on Computer Applications & Industrial Electronics (ISCAIE)\",\"volume\":\"45 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-05-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE Symposium on Computer Applications & Industrial Electronics (ISCAIE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISCAIE.2016.7575067\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Symposium on Computer Applications & Industrial Electronics (ISCAIE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCAIE.2016.7575067","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

本文对大多数阿拉伯语文字资源中变音符号缺失的问题进行了研究。我们的目标是实现一个可伸缩和可扩展的平台,以自动恢复现代标准阿拉伯语文本的缺失变音符。提出了不同的基于规则的技术和统计技术。这些包括:基于形态学分析,最大似然估计和统计n-图模型。根据变音符错误率(DER)和单词错误率(WER)对每种技术的变音符正确率进行评估。该平台包括用于文本预处理和编码转换的辅助工具。它产生了7.1%的WER和3.9%的DER。当忽略案例结尾时,该平台的WER和DER分别为5.1%和2.7%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automatic diacritics restoration for modern standard arabic text
In this paper, the problem of missing diacritic marks in most of Arabic written resources is investigated. Our aim is to implement a scalable and extensible platform to automatically restore missing diacritic marks for Modern Standard Arabic text. Different rule-based and statistical techniques are proposed. These include: morphological analyzer-based, maximum likelihood estimate, and statistical n-gram models. Diacritization accuracy of each technique was evaluated based on Diacritic Error Rate (DER) and Word Error Rate (WER). The proposed platform includes helper tools for text preprocessing and encoding conversion. It yielded a WER of 7.1% and DER of 3.9%. When the case ending was ignored, the platform yielded a WER and DER of 5.1% and 2.7%, respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信