带基因扰动的概率布尔网络反问题的改进牛顿法

Wen Li, W. Ching, Lu-Bin Cui
{"title":"带基因扰动的概率布尔网络反问题的改进牛顿法","authors":"Wen Li, W. Ching, Lu-Bin Cui","doi":"10.1109/ISB.2011.6033150","DOIUrl":null,"url":null,"abstract":"Modeling genetic regulatory networks is an important research issue in systems biology. Many mathematical models have been proposed, and among these models, Boolean Network (BN) and its extension Probabilistic Boolean Network (PBN) are popular. In this paper we consider the problem constructing PBNs with gene perturbations. We propose a modified Newton's method to get the gene perturbation probability of the captured problem. Numerical experiments are given to demonstrate both effectiveness and efficiency of our proposed method.","PeriodicalId":355056,"journal":{"name":"2011 IEEE International Conference on Systems Biology (ISB)","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A modified newton's method for inverse problem of Probabilistic Boolean Networks with gene perturbations\",\"authors\":\"Wen Li, W. Ching, Lu-Bin Cui\",\"doi\":\"10.1109/ISB.2011.6033150\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Modeling genetic regulatory networks is an important research issue in systems biology. Many mathematical models have been proposed, and among these models, Boolean Network (BN) and its extension Probabilistic Boolean Network (PBN) are popular. In this paper we consider the problem constructing PBNs with gene perturbations. We propose a modified Newton's method to get the gene perturbation probability of the captured problem. Numerical experiments are given to demonstrate both effectiveness and efficiency of our proposed method.\",\"PeriodicalId\":355056,\"journal\":{\"name\":\"2011 IEEE International Conference on Systems Biology (ISB)\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE International Conference on Systems Biology (ISB)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISB.2011.6033150\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE International Conference on Systems Biology (ISB)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISB.2011.6033150","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

遗传调控网络建模是系统生物学中的一个重要研究课题。人们提出了许多数学模型,其中布尔网络(BN)及其扩展概率布尔网络(PBN)最为流行。本文考虑了基因扰动下pbn的构造问题。我们提出了一种改进的牛顿法来求捕获问题的基因摄动概率。数值实验证明了该方法的有效性和高效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A modified newton's method for inverse problem of Probabilistic Boolean Networks with gene perturbations
Modeling genetic regulatory networks is an important research issue in systems biology. Many mathematical models have been proposed, and among these models, Boolean Network (BN) and its extension Probabilistic Boolean Network (PBN) are popular. In this paper we consider the problem constructing PBNs with gene perturbations. We propose a modified Newton's method to get the gene perturbation probability of the captured problem. Numerical experiments are given to demonstrate both effectiveness and efficiency of our proposed method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信