通过卫星图像和常识知识改进活动识别

N. Bicocchi, Damiano Fontana, F. Zambonelli
{"title":"通过卫星图像和常识知识改进活动识别","authors":"N. Bicocchi, Damiano Fontana, F. Zambonelli","doi":"10.1109/DEXA.2014.48","DOIUrl":null,"url":null,"abstract":"Activity recognition gained relevance in recent years because of its numerous applications. Despite relevant improvements, current classifiers are still inaccurate in several usage conditions or require time-consuming training. In this paper we show how localisation data and common sense knowledge could be used to improve activity recognition. More specifically, given the GPS position of the user, we both gather (i) a list of neighbouring commercial activities using a reverse geo-coding service and (ii) classify the satellite image of the area with state-of-the-art techniques. The approach maps classification labels produced by the three classifiers (i.e., activity, reverse geocoding localisation, satellite imagery localisation) to concepts within the ConceptNet network for the sake of improving activity recognition accuracy.","PeriodicalId":291899,"journal":{"name":"2014 25th International Workshop on Database and Expert Systems Applications","volume":"96 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Improving Activity Recognition via Satellite Imagery and Commonsense Knowledge\",\"authors\":\"N. Bicocchi, Damiano Fontana, F. Zambonelli\",\"doi\":\"10.1109/DEXA.2014.48\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Activity recognition gained relevance in recent years because of its numerous applications. Despite relevant improvements, current classifiers are still inaccurate in several usage conditions or require time-consuming training. In this paper we show how localisation data and common sense knowledge could be used to improve activity recognition. More specifically, given the GPS position of the user, we both gather (i) a list of neighbouring commercial activities using a reverse geo-coding service and (ii) classify the satellite image of the area with state-of-the-art techniques. The approach maps classification labels produced by the three classifiers (i.e., activity, reverse geocoding localisation, satellite imagery localisation) to concepts within the ConceptNet network for the sake of improving activity recognition accuracy.\",\"PeriodicalId\":291899,\"journal\":{\"name\":\"2014 25th International Workshop on Database and Expert Systems Applications\",\"volume\":\"96 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 25th International Workshop on Database and Expert Systems Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DEXA.2014.48\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 25th International Workshop on Database and Expert Systems Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DEXA.2014.48","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

活动识别近年来因其众多的应用而获得了广泛的应用。尽管有相关的改进,但目前的分类器在一些使用条件下仍然不准确,或者需要耗时的训练。在本文中,我们展示了如何使用定位数据和常识知识来改进活动识别。更具体地说,鉴于用户的GPS位置,我们都收集(i)使用反向地理编码服务收集邻近商业活动的列表,以及(ii)使用最先进的技术对该地区的卫星图像进行分类。该方法将三个分类器(即活动、反向地理编码定位、卫星图像定位)产生的分类标签映射到ConceptNet网络中的概念,以提高活动识别的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improving Activity Recognition via Satellite Imagery and Commonsense Knowledge
Activity recognition gained relevance in recent years because of its numerous applications. Despite relevant improvements, current classifiers are still inaccurate in several usage conditions or require time-consuming training. In this paper we show how localisation data and common sense knowledge could be used to improve activity recognition. More specifically, given the GPS position of the user, we both gather (i) a list of neighbouring commercial activities using a reverse geo-coding service and (ii) classify the satellite image of the area with state-of-the-art techniques. The approach maps classification labels produced by the three classifiers (i.e., activity, reverse geocoding localisation, satellite imagery localisation) to concepts within the ConceptNet network for the sake of improving activity recognition accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信