通过机器学习进行网络流量检测

Asiya Begum, B.Srinivas S.P Kumar
{"title":"通过机器学习进行网络流量检测","authors":"Asiya Begum, B.Srinivas S.P Kumar","doi":"10.46647/ijetms.2022.v06i06.072","DOIUrl":null,"url":null,"abstract":"In imbalanced network traffic, malicious cyber-attacks can often hide in large amounts of normal data. It exhibits a high degree of stealth and obfuscation in cyberspace, making it difficult for Network Intrusion Detection System (NIDS) to ensure the accuracy and timeliness of detection. This paper researches machine learning and deep learning for intrusion detection in imbalanced network traffic. It proposes a novel Difficult Set Sampling Technique (DSSTE) algorithm to tackle the class imbalance problem. To verify the proposed method, we conduct experiments on the classic intrusion dataset NSL-KDD and the newer and comprehensive intrusion dataset CSE-CIC-IDS2018. We use classical classification models: random forest(RF), Support Vector Machine(SVM), XGBoost, MLP\nAlexNet, Mini-VGGNet.","PeriodicalId":202831,"journal":{"name":"international journal of engineering technology and management sciences","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"NETWORK TRAFFIC DETECTION THROUGH MACHINE LEARNING\",\"authors\":\"Asiya Begum, B.Srinivas S.P Kumar\",\"doi\":\"10.46647/ijetms.2022.v06i06.072\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In imbalanced network traffic, malicious cyber-attacks can often hide in large amounts of normal data. It exhibits a high degree of stealth and obfuscation in cyberspace, making it difficult for Network Intrusion Detection System (NIDS) to ensure the accuracy and timeliness of detection. This paper researches machine learning and deep learning for intrusion detection in imbalanced network traffic. It proposes a novel Difficult Set Sampling Technique (DSSTE) algorithm to tackle the class imbalance problem. To verify the proposed method, we conduct experiments on the classic intrusion dataset NSL-KDD and the newer and comprehensive intrusion dataset CSE-CIC-IDS2018. We use classical classification models: random forest(RF), Support Vector Machine(SVM), XGBoost, MLP\\nAlexNet, Mini-VGGNet.\",\"PeriodicalId\":202831,\"journal\":{\"name\":\"international journal of engineering technology and management sciences\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"international journal of engineering technology and management sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.46647/ijetms.2022.v06i06.072\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"international journal of engineering technology and management sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46647/ijetms.2022.v06i06.072","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在网络流量不均衡的情况下,恶意网络攻击往往隐藏在大量正常数据中。它在网络空间中具有高度的隐身性和混淆性,给网络入侵检测系统(NIDS)带来了难以保证检测准确性和及时性的难题。本文研究了机器学习和深度学习在网络流量不平衡情况下的入侵检测。提出了一种新的难集采样技术(DSSTE)算法来解决类不平衡问题。为了验证提出的方法,我们在经典入侵数据集NSL-KDD和较新的综合入侵数据集CSE-CIC-IDS2018上进行了实验。我们使用经典的分类模型:随机森林(RF)、支持向量机(SVM)、XGBoost、MLPAlexNet、Mini-VGGNet。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
NETWORK TRAFFIC DETECTION THROUGH MACHINE LEARNING
In imbalanced network traffic, malicious cyber-attacks can often hide in large amounts of normal data. It exhibits a high degree of stealth and obfuscation in cyberspace, making it difficult for Network Intrusion Detection System (NIDS) to ensure the accuracy and timeliness of detection. This paper researches machine learning and deep learning for intrusion detection in imbalanced network traffic. It proposes a novel Difficult Set Sampling Technique (DSSTE) algorithm to tackle the class imbalance problem. To verify the proposed method, we conduct experiments on the classic intrusion dataset NSL-KDD and the newer and comprehensive intrusion dataset CSE-CIC-IDS2018. We use classical classification models: random forest(RF), Support Vector Machine(SVM), XGBoost, MLP AlexNet, Mini-VGGNet.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信