Sergio Davies, T. Stewart, C. Eliasmith, S. Furber
{"title":"SpiNNaker神经模拟模拟器传递函数的基于spike的学习","authors":"Sergio Davies, T. Stewart, C. Eliasmith, S. Furber","doi":"10.1109/IJCNN.2013.6706962","DOIUrl":null,"url":null,"abstract":"Recent papers have shown the possibility to implement large scale neural network models that perform complex algorithms in a biologically realistic way. However, such models have been simulated on architectures unable to perform real-time simulations. In previous work we presented the possibility to simulate simple models in real-time on the SpiNNaker neuromimetic architecture. However, such models were “static”: the algorithm performed was defined at design-time. In this paper we present a novel learning rule, that exploits the peculiarities of the SpiNNaker system, enabling models designed with the Neural Engineering Framework (NEF) to learn transfer functions using a supervised framework. We show that the proposed learning rule, belonging to the Prescribed Error Sensitivity (PES) class, is able to learn, effectively, both linear and non-linear functions.","PeriodicalId":376975,"journal":{"name":"The 2013 International Joint Conference on Neural Networks (IJCNN)","volume":"235 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Spike-based learning of transfer functions with the SpiNNaker neuromimetic simulator\",\"authors\":\"Sergio Davies, T. Stewart, C. Eliasmith, S. Furber\",\"doi\":\"10.1109/IJCNN.2013.6706962\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recent papers have shown the possibility to implement large scale neural network models that perform complex algorithms in a biologically realistic way. However, such models have been simulated on architectures unable to perform real-time simulations. In previous work we presented the possibility to simulate simple models in real-time on the SpiNNaker neuromimetic architecture. However, such models were “static”: the algorithm performed was defined at design-time. In this paper we present a novel learning rule, that exploits the peculiarities of the SpiNNaker system, enabling models designed with the Neural Engineering Framework (NEF) to learn transfer functions using a supervised framework. We show that the proposed learning rule, belonging to the Prescribed Error Sensitivity (PES) class, is able to learn, effectively, both linear and non-linear functions.\",\"PeriodicalId\":376975,\"journal\":{\"name\":\"The 2013 International Joint Conference on Neural Networks (IJCNN)\",\"volume\":\"235 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-08-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The 2013 International Joint Conference on Neural Networks (IJCNN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IJCNN.2013.6706962\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 2013 International Joint Conference on Neural Networks (IJCNN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.2013.6706962","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Spike-based learning of transfer functions with the SpiNNaker neuromimetic simulator
Recent papers have shown the possibility to implement large scale neural network models that perform complex algorithms in a biologically realistic way. However, such models have been simulated on architectures unable to perform real-time simulations. In previous work we presented the possibility to simulate simple models in real-time on the SpiNNaker neuromimetic architecture. However, such models were “static”: the algorithm performed was defined at design-time. In this paper we present a novel learning rule, that exploits the peculiarities of the SpiNNaker system, enabling models designed with the Neural Engineering Framework (NEF) to learn transfer functions using a supervised framework. We show that the proposed learning rule, belonging to the Prescribed Error Sensitivity (PES) class, is able to learn, effectively, both linear and non-linear functions.