SpiNNaker神经模拟模拟器传递函数的基于spike的学习

Sergio Davies, T. Stewart, C. Eliasmith, S. Furber
{"title":"SpiNNaker神经模拟模拟器传递函数的基于spike的学习","authors":"Sergio Davies, T. Stewart, C. Eliasmith, S. Furber","doi":"10.1109/IJCNN.2013.6706962","DOIUrl":null,"url":null,"abstract":"Recent papers have shown the possibility to implement large scale neural network models that perform complex algorithms in a biologically realistic way. However, such models have been simulated on architectures unable to perform real-time simulations. In previous work we presented the possibility to simulate simple models in real-time on the SpiNNaker neuromimetic architecture. However, such models were “static”: the algorithm performed was defined at design-time. In this paper we present a novel learning rule, that exploits the peculiarities of the SpiNNaker system, enabling models designed with the Neural Engineering Framework (NEF) to learn transfer functions using a supervised framework. We show that the proposed learning rule, belonging to the Prescribed Error Sensitivity (PES) class, is able to learn, effectively, both linear and non-linear functions.","PeriodicalId":376975,"journal":{"name":"The 2013 International Joint Conference on Neural Networks (IJCNN)","volume":"235 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Spike-based learning of transfer functions with the SpiNNaker neuromimetic simulator\",\"authors\":\"Sergio Davies, T. Stewart, C. Eliasmith, S. Furber\",\"doi\":\"10.1109/IJCNN.2013.6706962\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recent papers have shown the possibility to implement large scale neural network models that perform complex algorithms in a biologically realistic way. However, such models have been simulated on architectures unable to perform real-time simulations. In previous work we presented the possibility to simulate simple models in real-time on the SpiNNaker neuromimetic architecture. However, such models were “static”: the algorithm performed was defined at design-time. In this paper we present a novel learning rule, that exploits the peculiarities of the SpiNNaker system, enabling models designed with the Neural Engineering Framework (NEF) to learn transfer functions using a supervised framework. We show that the proposed learning rule, belonging to the Prescribed Error Sensitivity (PES) class, is able to learn, effectively, both linear and non-linear functions.\",\"PeriodicalId\":376975,\"journal\":{\"name\":\"The 2013 International Joint Conference on Neural Networks (IJCNN)\",\"volume\":\"235 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-08-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The 2013 International Joint Conference on Neural Networks (IJCNN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IJCNN.2013.6706962\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 2013 International Joint Conference on Neural Networks (IJCNN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.2013.6706962","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

最近的论文显示了实现大规模神经网络模型的可能性,这些模型以生物现实的方式执行复杂的算法。然而,这些模型已经在无法进行实时仿真的架构上进行了仿真。在之前的工作中,我们提出了在SpiNNaker神经模拟架构上实时模拟简单模型的可能性。然而,这样的模型是“静态的”:执行的算法是在设计时定义的。在本文中,我们提出了一种新的学习规则,该规则利用了SpiNNaker系统的特性,使使用神经工程框架(NEF)设计的模型能够使用监督框架学习传递函数。我们的研究表明,所提出的学习规则属于规定误差灵敏度(PES)类,能够有效地学习线性和非线性函数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Spike-based learning of transfer functions with the SpiNNaker neuromimetic simulator
Recent papers have shown the possibility to implement large scale neural network models that perform complex algorithms in a biologically realistic way. However, such models have been simulated on architectures unable to perform real-time simulations. In previous work we presented the possibility to simulate simple models in real-time on the SpiNNaker neuromimetic architecture. However, such models were “static”: the algorithm performed was defined at design-time. In this paper we present a novel learning rule, that exploits the peculiarities of the SpiNNaker system, enabling models designed with the Neural Engineering Framework (NEF) to learn transfer functions using a supervised framework. We show that the proposed learning rule, belonging to the Prescribed Error Sensitivity (PES) class, is able to learn, effectively, both linear and non-linear functions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信