POSTER:科学应用的数据流架构优化

Xiaowei Shen, Xiaochun Ye, Xu Tan, Da Wang, Zhimin Zhang, Dongrui Fan, Zhimin Tang
{"title":"POSTER:科学应用的数据流架构优化","authors":"Xiaowei Shen, Xiaochun Ye, Xu Tan, Da Wang, Zhimin Zhang, Dongrui Fan, Zhimin Tang","doi":"10.1145/2967938.2974054","DOIUrl":null,"url":null,"abstract":"Dataflow computing is proved to be promising in high-performance computing. However, traditional dataflow architectures are general-purpose and not efficient enough when dealing with typical scientific applications due to low utilization of function units. In this paper, we propose an optimization of dataflow architectures for scientific applications. The optimization introduces a request for operands mechanism and a topology-based instruction mapping algorithm to improve the efficiency of dataflow architectures. Experimental results show that the request for operands optimization achieves a 4.6% average performance improvement over the traditional dataflow architectures and the TBIM algorithm achieves a 2.28× and a 1.98× average performance improvement over SPDI and SPS algorithm respectively.","PeriodicalId":407717,"journal":{"name":"2016 International Conference on Parallel Architecture and Compilation Techniques (PACT)","volume":"85 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"POSTER: An optimization of dataflow architectures for scientific applications\",\"authors\":\"Xiaowei Shen, Xiaochun Ye, Xu Tan, Da Wang, Zhimin Zhang, Dongrui Fan, Zhimin Tang\",\"doi\":\"10.1145/2967938.2974054\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Dataflow computing is proved to be promising in high-performance computing. However, traditional dataflow architectures are general-purpose and not efficient enough when dealing with typical scientific applications due to low utilization of function units. In this paper, we propose an optimization of dataflow architectures for scientific applications. The optimization introduces a request for operands mechanism and a topology-based instruction mapping algorithm to improve the efficiency of dataflow architectures. Experimental results show that the request for operands optimization achieves a 4.6% average performance improvement over the traditional dataflow architectures and the TBIM algorithm achieves a 2.28× and a 1.98× average performance improvement over SPDI and SPS algorithm respectively.\",\"PeriodicalId\":407717,\"journal\":{\"name\":\"2016 International Conference on Parallel Architecture and Compilation Techniques (PACT)\",\"volume\":\"85 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 International Conference on Parallel Architecture and Compilation Techniques (PACT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2967938.2974054\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 International Conference on Parallel Architecture and Compilation Techniques (PACT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2967938.2974054","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

数据流计算在高性能计算中具有广阔的应用前景。然而,传统的数据流架构是通用的,在处理典型的科学应用时,由于功能单元的利用率低,效率不够高。本文提出了一种面向科学应用的数据流架构优化方法。该优化引入了操作数请求机制和基于拓扑的指令映射算法,以提高数据流架构的效率。实验结果表明,操作数优化请求比传统数据流架构的平均性能提高4.6%,TBIM算法比SPDI和SPS算法的平均性能分别提高2.28倍和1.98倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
POSTER: An optimization of dataflow architectures for scientific applications
Dataflow computing is proved to be promising in high-performance computing. However, traditional dataflow architectures are general-purpose and not efficient enough when dealing with typical scientific applications due to low utilization of function units. In this paper, we propose an optimization of dataflow architectures for scientific applications. The optimization introduces a request for operands mechanism and a topology-based instruction mapping algorithm to improve the efficiency of dataflow architectures. Experimental results show that the request for operands optimization achieves a 4.6% average performance improvement over the traditional dataflow architectures and the TBIM algorithm achieves a 2.28× and a 1.98× average performance improvement over SPDI and SPS algorithm respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信