不使用选择公理/良序定理生成良序实数集的严格过程

Karan Doshi
{"title":"不使用选择公理/良序定理生成良序实数集的严格过程","authors":"Karan Doshi","doi":"10.9734/bpi/ctmcs/v9/3400","DOIUrl":null,"url":null,"abstract":"Well-ordering of the Reals@@ presents a major challenge in Set theory. Under the standard Zermelo Fraenkel Set theory (ZF) with the Axiom of Choice (ZFC), a well-ordering of the Reals is indeed possible. However the Axiom of Choice (AC) had to be introduced to the original ZF theory which is then shown equivalent to the well-ordering theorem. Despite the result however, no way has still been found of actually constructing a well-ordered Set of Reals. In this paper the author attempts to generate a well ordered Set of Reals without using the AC i.e. under ZF theory itself using the Axiom of the Power Set as the guiding principle.","PeriodicalId":420784,"journal":{"name":"Current Topics on Mathematics and Computer Science Vol. 9","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Rigorous Procedure for Generating a Well-ordered Set of Reals without use of Axiom of Choice/Well-ordering Theorem\",\"authors\":\"Karan Doshi\",\"doi\":\"10.9734/bpi/ctmcs/v9/3400\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Well-ordering of the Reals@@ presents a major challenge in Set theory. Under the standard Zermelo Fraenkel Set theory (ZF) with the Axiom of Choice (ZFC), a well-ordering of the Reals is indeed possible. However the Axiom of Choice (AC) had to be introduced to the original ZF theory which is then shown equivalent to the well-ordering theorem. Despite the result however, no way has still been found of actually constructing a well-ordered Set of Reals. In this paper the author attempts to generate a well ordered Set of Reals without using the AC i.e. under ZF theory itself using the Axiom of the Power Set as the guiding principle.\",\"PeriodicalId\":420784,\"journal\":{\"name\":\"Current Topics on Mathematics and Computer Science Vol. 9\",\"volume\":\"42 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Topics on Mathematics and Computer Science Vol. 9\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.9734/bpi/ctmcs/v9/3400\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Topics on Mathematics and Computer Science Vol. 9","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.9734/bpi/ctmcs/v9/3400","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

实数的良好排序是集合论中的一个重大挑战。在标准的Zermelo - Fraenkel集合理论(ZF)和选择公理(ZFC)下,实数的良序确实是可能的。然而,必须将选择公理(AC)引入原来的ZF理论,然后证明它与良序定理等价。然而,尽管有这样的结果,我们仍然没有找到实际构造良序实数集的方法。在本文中,作者试图在不使用AC的情况下,即在ZF理论本身下,以幂集公理为指导原则,生成一个良序实数集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Rigorous Procedure for Generating a Well-ordered Set of Reals without use of Axiom of Choice/Well-ordering Theorem
Well-ordering of the Reals@@ presents a major challenge in Set theory. Under the standard Zermelo Fraenkel Set theory (ZF) with the Axiom of Choice (ZFC), a well-ordering of the Reals is indeed possible. However the Axiom of Choice (AC) had to be introduced to the original ZF theory which is then shown equivalent to the well-ordering theorem. Despite the result however, no way has still been found of actually constructing a well-ordered Set of Reals. In this paper the author attempts to generate a well ordered Set of Reals without using the AC i.e. under ZF theory itself using the Axiom of the Power Set as the guiding principle.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信