脑电图信号优势分量的双峰高斯PDF用于癫痫活动分类

Tanima Tasmin Chowdhury, A. Z. Zadidul Karim, S. Fattah, C. Shahnaz
{"title":"脑电图信号优势分量的双峰高斯PDF用于癫痫活动分类","authors":"Tanima Tasmin Chowdhury, A. Z. Zadidul Karim, S. Fattah, C. Shahnaz","doi":"10.1109/WIECON-ECE.2017.8468872","DOIUrl":null,"url":null,"abstract":"In this paper, time-frequency domain operation exploiting Empirical Mode Decomposition (EMD) is performed on EEG signals to classify normal activity of healthy person, non-seizure (inter-ictal) and seizure (ictal) activity of seizure patients. Analyzing power spectral density estimation in the set of Intrinsic Mode Functions (IMFs) by periodogram, it is seen rational to specify some prominent IMFs to use in classification problem. Bimodal distribution which is two components Gaussian statistical model is utilized in specified leading IMFs to summarize information in it and propose feature set using the modeling parameters of two component Gaussian probability density function (PDF). Empirical and Gaussian PDF have been plotted along with Kolmogorov-Smirnov (K-S test) goodness-of-fit hypothesis test and found Gaussian statistical model most effective to feed modeling parameters of Gaussian PDF in SVM and ANN classifier for normal, inter-ictal and ictal stages of seizure classification. The proposed technique is accomplished with making higher sensitivity, specificity and accuracy compared to that made by an up-to-date method while wide range of simulations were performed using the same benchmark EEG dataset and classifier.","PeriodicalId":188031,"journal":{"name":"2017 IEEE International WIE Conference on Electrical and Computer Engineering (WIECON-ECE)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Bimodal Gaussian PDF of the Dominant IMFs of EEG Signals for Seizure Activity Classification\",\"authors\":\"Tanima Tasmin Chowdhury, A. Z. Zadidul Karim, S. Fattah, C. Shahnaz\",\"doi\":\"10.1109/WIECON-ECE.2017.8468872\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, time-frequency domain operation exploiting Empirical Mode Decomposition (EMD) is performed on EEG signals to classify normal activity of healthy person, non-seizure (inter-ictal) and seizure (ictal) activity of seizure patients. Analyzing power spectral density estimation in the set of Intrinsic Mode Functions (IMFs) by periodogram, it is seen rational to specify some prominent IMFs to use in classification problem. Bimodal distribution which is two components Gaussian statistical model is utilized in specified leading IMFs to summarize information in it and propose feature set using the modeling parameters of two component Gaussian probability density function (PDF). Empirical and Gaussian PDF have been plotted along with Kolmogorov-Smirnov (K-S test) goodness-of-fit hypothesis test and found Gaussian statistical model most effective to feed modeling parameters of Gaussian PDF in SVM and ANN classifier for normal, inter-ictal and ictal stages of seizure classification. The proposed technique is accomplished with making higher sensitivity, specificity and accuracy compared to that made by an up-to-date method while wide range of simulations were performed using the same benchmark EEG dataset and classifier.\",\"PeriodicalId\":188031,\"journal\":{\"name\":\"2017 IEEE International WIE Conference on Electrical and Computer Engineering (WIECON-ECE)\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE International WIE Conference on Electrical and Computer Engineering (WIECON-ECE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WIECON-ECE.2017.8468872\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International WIE Conference on Electrical and Computer Engineering (WIECON-ECE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WIECON-ECE.2017.8468872","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文利用经验模态分解(EMD)对脑电图信号进行时频域运算,对健康人的正常活动、癫痫患者的非发作(发作间期)活动和癫痫患者的发作(发作期)活动进行分类。利用周期图分析本征模态函数集的功率谱密度估计,指出一些突出的本征模态函数用于分类问题是合理的。利用双峰分布这一双分量高斯统计模型,对特定的超前IMFs进行信息汇总,并利用双分量高斯概率密度函数(PDF)的建模参数提出特征集。利用Kolmogorov-Smirnov (K-S检验)拟合优度假设检验对经验PDF和高斯PDF进行了绘制,发现高斯统计模型最有效地为支持向量机和人工神经网络分类器提供高斯PDF的建模参数,用于癫痫发作的正态、间期和发作期分类。在使用相同的基准EEG数据集和分类器进行大范围的模拟时,与最新方法相比,所提出的技术具有更高的灵敏度、特异性和准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bimodal Gaussian PDF of the Dominant IMFs of EEG Signals for Seizure Activity Classification
In this paper, time-frequency domain operation exploiting Empirical Mode Decomposition (EMD) is performed on EEG signals to classify normal activity of healthy person, non-seizure (inter-ictal) and seizure (ictal) activity of seizure patients. Analyzing power spectral density estimation in the set of Intrinsic Mode Functions (IMFs) by periodogram, it is seen rational to specify some prominent IMFs to use in classification problem. Bimodal distribution which is two components Gaussian statistical model is utilized in specified leading IMFs to summarize information in it and propose feature set using the modeling parameters of two component Gaussian probability density function (PDF). Empirical and Gaussian PDF have been plotted along with Kolmogorov-Smirnov (K-S test) goodness-of-fit hypothesis test and found Gaussian statistical model most effective to feed modeling parameters of Gaussian PDF in SVM and ANN classifier for normal, inter-ictal and ictal stages of seizure classification. The proposed technique is accomplished with making higher sensitivity, specificity and accuracy compared to that made by an up-to-date method while wide range of simulations were performed using the same benchmark EEG dataset and classifier.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信