基于稀疏恢复深度学习网络的高分辨率SAR层析成像

Rong Shen, Shunjun Wei, Zichen Zhou, Mou Wang
{"title":"基于稀疏恢复深度学习网络的高分辨率SAR层析成像","authors":"Rong Shen, Shunjun Wei, Zichen Zhou, Mou Wang","doi":"10.1109/CISS57580.2022.9971352","DOIUrl":null,"url":null,"abstract":"Tomographic synthetic aperture radar (TomoSAR) can achieve high-precision elevation inversion through interferometric phase, and realize three-dimensional (3-D) SAR imaging owing to the virtual elevation synthetic aperture formed by multi-pass. However, traditional high resolution imaging algorithms based on compressive sensing sparse recovery, need to set algorithm parameters and iterations artificially. Moreover, the set value has a great influence on the final imaging quality. In order to automatically adjust the parameters to the optimal state, we propose an efficient unfolded deep shrinkage-thresholding network (UDST-net) for TomoSAR 3-D imaging. The network can realize nonlinear sparse transformation and end-to-end learning through convolution layer, which improves the efficiency of imaging. The results of airborne experiments demonstrate that the UDST-net outperform some traditional CS-based algorithms.","PeriodicalId":331510,"journal":{"name":"2022 3rd China International SAR Symposium (CISS)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High Resolution SAR Tomography 3-D Imaging via Sparse Recovery Deep Learning Network\",\"authors\":\"Rong Shen, Shunjun Wei, Zichen Zhou, Mou Wang\",\"doi\":\"10.1109/CISS57580.2022.9971352\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Tomographic synthetic aperture radar (TomoSAR) can achieve high-precision elevation inversion through interferometric phase, and realize three-dimensional (3-D) SAR imaging owing to the virtual elevation synthetic aperture formed by multi-pass. However, traditional high resolution imaging algorithms based on compressive sensing sparse recovery, need to set algorithm parameters and iterations artificially. Moreover, the set value has a great influence on the final imaging quality. In order to automatically adjust the parameters to the optimal state, we propose an efficient unfolded deep shrinkage-thresholding network (UDST-net) for TomoSAR 3-D imaging. The network can realize nonlinear sparse transformation and end-to-end learning through convolution layer, which improves the efficiency of imaging. The results of airborne experiments demonstrate that the UDST-net outperform some traditional CS-based algorithms.\",\"PeriodicalId\":331510,\"journal\":{\"name\":\"2022 3rd China International SAR Symposium (CISS)\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 3rd China International SAR Symposium (CISS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CISS57580.2022.9971352\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 3rd China International SAR Symposium (CISS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CISS57580.2022.9971352","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

层析合成孔径雷达(TomoSAR)通过干涉相位实现高精度高程反演,并利用多道次形成的虚拟高程合成孔径实现三维SAR成像。然而,传统的基于压缩感知稀疏恢复的高分辨率成像算法需要人为设置算法参数和迭代次数。而且,设定值对最终成像质量影响很大。为了自动调整参数到最优状态,我们提出了一种高效的折叠深度收缩阈值网络(UDST-net)用于TomoSAR三维成像。该网络通过卷积层实现了非线性稀疏变换和端到端学习,提高了成像效率。机载实验结果表明,UDST-net优于传统的基于cs的算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
High Resolution SAR Tomography 3-D Imaging via Sparse Recovery Deep Learning Network
Tomographic synthetic aperture radar (TomoSAR) can achieve high-precision elevation inversion through interferometric phase, and realize three-dimensional (3-D) SAR imaging owing to the virtual elevation synthetic aperture formed by multi-pass. However, traditional high resolution imaging algorithms based on compressive sensing sparse recovery, need to set algorithm parameters and iterations artificially. Moreover, the set value has a great influence on the final imaging quality. In order to automatically adjust the parameters to the optimal state, we propose an efficient unfolded deep shrinkage-thresholding network (UDST-net) for TomoSAR 3-D imaging. The network can realize nonlinear sparse transformation and end-to-end learning through convolution layer, which improves the efficiency of imaging. The results of airborne experiments demonstrate that the UDST-net outperform some traditional CS-based algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信