利用脑不对称性实现学习风格分类的聚类分析

N. A. Rashid, M. Taib, S. Lias, N. Sulaiman
{"title":"利用脑不对称性实现学习风格分类的聚类分析","authors":"N. A. Rashid, M. Taib, S. Lias, N. Sulaiman","doi":"10.1109/CSPA.2011.5759893","DOIUrl":null,"url":null,"abstract":"This study highlighted the use of Cluster analysis approach to classify the participants' Learning Style (LS) based on the EEG brain asymmetry (BA) dataset. BA is importance to indicate brain activity in both right hemisphere (RH) and left hemisphere (LH). The RH and LH dominant states are closely related to human learning traits such as Attention, Perception and Emotions. In this research, we determine the LS of 41 participants using Kolb's Learning Style Inventory (LSI). The LSI will group them into the LS of either Diverger, Assimilator, Converger or Accommodator. Simultaneously, their Electroencephalogram (EEG) is recorded from which the BA will be calculated using the Asymmetry Relation Ratio (ARR) formula. The Alpha and Beta Energy Spectral Density (ESD) are used as input for the ARR. Finally, the SPSS 2Steps cluster analysis will be deployed to classify the BA towards the corresponding LS. The result obtained shown that the classification of each LS is achieving 100% accuracy. We also managed to specify the significant state of LH or RH dominant for each LS.","PeriodicalId":282179,"journal":{"name":"2011 IEEE 7th International Colloquium on Signal Processing and its Applications","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Implementation of Cluster analysis for Learning Style classification using brain Asymmetry\",\"authors\":\"N. A. Rashid, M. Taib, S. Lias, N. Sulaiman\",\"doi\":\"10.1109/CSPA.2011.5759893\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study highlighted the use of Cluster analysis approach to classify the participants' Learning Style (LS) based on the EEG brain asymmetry (BA) dataset. BA is importance to indicate brain activity in both right hemisphere (RH) and left hemisphere (LH). The RH and LH dominant states are closely related to human learning traits such as Attention, Perception and Emotions. In this research, we determine the LS of 41 participants using Kolb's Learning Style Inventory (LSI). The LSI will group them into the LS of either Diverger, Assimilator, Converger or Accommodator. Simultaneously, their Electroencephalogram (EEG) is recorded from which the BA will be calculated using the Asymmetry Relation Ratio (ARR) formula. The Alpha and Beta Energy Spectral Density (ESD) are used as input for the ARR. Finally, the SPSS 2Steps cluster analysis will be deployed to classify the BA towards the corresponding LS. The result obtained shown that the classification of each LS is achieving 100% accuracy. We also managed to specify the significant state of LH or RH dominant for each LS.\",\"PeriodicalId\":282179,\"journal\":{\"name\":\"2011 IEEE 7th International Colloquium on Signal Processing and its Applications\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE 7th International Colloquium on Signal Processing and its Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CSPA.2011.5759893\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE 7th International Colloquium on Signal Processing and its Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSPA.2011.5759893","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

本研究基于脑电不对称数据集,采用聚类分析方法对被试的学习风格进行分类。BA对于指示右半球(RH)和左半球(LH)的脑活动具有重要意义。RH和LH优势状态与人类的注意力、感知和情绪等学习特征密切相关。在本研究中,我们使用科尔布学习风格量表(LSI)来确定41名参与者的学习风格。LSI将它们分为分流器、同化器、汇聚器或调节器。同时,记录他们的脑电图(EEG),使用不对称关系比(ARR)公式计算BA。Alpha和Beta能量谱密度(ESD)被用作ARR的输入。最后,将部署SPSS 2Steps聚类分析,将BA分类到相应的LS。结果表明,每个LS的分类准确率都达到了100%。我们还设法指定每个LS的LH或RH显性显著状态。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Implementation of Cluster analysis for Learning Style classification using brain Asymmetry
This study highlighted the use of Cluster analysis approach to classify the participants' Learning Style (LS) based on the EEG brain asymmetry (BA) dataset. BA is importance to indicate brain activity in both right hemisphere (RH) and left hemisphere (LH). The RH and LH dominant states are closely related to human learning traits such as Attention, Perception and Emotions. In this research, we determine the LS of 41 participants using Kolb's Learning Style Inventory (LSI). The LSI will group them into the LS of either Diverger, Assimilator, Converger or Accommodator. Simultaneously, their Electroencephalogram (EEG) is recorded from which the BA will be calculated using the Asymmetry Relation Ratio (ARR) formula. The Alpha and Beta Energy Spectral Density (ESD) are used as input for the ARR. Finally, the SPSS 2Steps cluster analysis will be deployed to classify the BA towards the corresponding LS. The result obtained shown that the classification of each LS is achieving 100% accuracy. We also managed to specify the significant state of LH or RH dominant for each LS.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信