Sofia Romagnoli, Ilaria Marcantoni, Katyana Campanella, A. Sbrollini, M. Morettini, L. Burattini
{"title":"运动过程中便携式传感器获取的心电图的有效r峰检测的集成经验模态分解","authors":"Sofia Romagnoli, Ilaria Marcantoni, Katyana Campanella, A. Sbrollini, M. Morettini, L. Burattini","doi":"10.1109/MeMeA52024.2021.9478598","DOIUrl":null,"url":null,"abstract":"Wearable and portable electrocardiographic devices are revolutionizing athlete’s screening through digital health application enabling a continuous monitoring of important cardiac parameters in real-time. Automatic examination of electrocardiogram (ECG) acquired during sport activity is challenging because acquisition conditions often lead to record ECGs with low signal to noise ratio (SNR). The initial issue of automatic ECG analysis is the identification of R peaks. R peaks are fundamental for the estimation of heart rate, which is the primary clinical parameter used by athletes for athletic performance evaluation. Thus, the aim of this research is to propose an R-peak detection algorithm for ECGs acquired during sport activity by portable and wearable sensors dealing with low SNR. The algorithm is based on a noise assisted data analysis method: Ensemble Empirical Mode Decomposition method (EEMD). Localization of R peaks is primarily performed on the first intrinsic mode function extracted by the EEMD. The algorithm was tested on ‘Run on indoor treadmill’ dataset from Physionet. ECGs were acquired during running/light jogging on an indoor treadmill and present a low SNR (1±7 dB). The developed EEMD-based algorithm showed good performances in terms of positive predicted value (91.08%), sensitivity (92.76%), false discovery rate (8.92), false negative rate (7.24%), cumulative statistical index (83.84%) and mean R-peak position error 1.10 [0.46;1.46]ms. EEMD-based algorithm performs efficiently also in computing heart rate. In conclusion, the developed R-peak detection EEMD-based algorithm showed good level of performances even working on low-SNR ECG acquired during sport activity by portable sensors.","PeriodicalId":429222,"journal":{"name":"2021 IEEE International Symposium on Medical Measurements and Applications (MeMeA)","volume":"61 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Ensemble Empirical Mode Decomposition for Efficient R-Peak Detection in Electrocardiograms Acquired by Portable Sensors During Sport Activity\",\"authors\":\"Sofia Romagnoli, Ilaria Marcantoni, Katyana Campanella, A. Sbrollini, M. Morettini, L. Burattini\",\"doi\":\"10.1109/MeMeA52024.2021.9478598\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Wearable and portable electrocardiographic devices are revolutionizing athlete’s screening through digital health application enabling a continuous monitoring of important cardiac parameters in real-time. Automatic examination of electrocardiogram (ECG) acquired during sport activity is challenging because acquisition conditions often lead to record ECGs with low signal to noise ratio (SNR). The initial issue of automatic ECG analysis is the identification of R peaks. R peaks are fundamental for the estimation of heart rate, which is the primary clinical parameter used by athletes for athletic performance evaluation. Thus, the aim of this research is to propose an R-peak detection algorithm for ECGs acquired during sport activity by portable and wearable sensors dealing with low SNR. The algorithm is based on a noise assisted data analysis method: Ensemble Empirical Mode Decomposition method (EEMD). Localization of R peaks is primarily performed on the first intrinsic mode function extracted by the EEMD. The algorithm was tested on ‘Run on indoor treadmill’ dataset from Physionet. ECGs were acquired during running/light jogging on an indoor treadmill and present a low SNR (1±7 dB). The developed EEMD-based algorithm showed good performances in terms of positive predicted value (91.08%), sensitivity (92.76%), false discovery rate (8.92), false negative rate (7.24%), cumulative statistical index (83.84%) and mean R-peak position error 1.10 [0.46;1.46]ms. EEMD-based algorithm performs efficiently also in computing heart rate. In conclusion, the developed R-peak detection EEMD-based algorithm showed good level of performances even working on low-SNR ECG acquired during sport activity by portable sensors.\",\"PeriodicalId\":429222,\"journal\":{\"name\":\"2021 IEEE International Symposium on Medical Measurements and Applications (MeMeA)\",\"volume\":\"61 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE International Symposium on Medical Measurements and Applications (MeMeA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MeMeA52024.2021.9478598\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Symposium on Medical Measurements and Applications (MeMeA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MeMeA52024.2021.9478598","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Ensemble Empirical Mode Decomposition for Efficient R-Peak Detection in Electrocardiograms Acquired by Portable Sensors During Sport Activity
Wearable and portable electrocardiographic devices are revolutionizing athlete’s screening through digital health application enabling a continuous monitoring of important cardiac parameters in real-time. Automatic examination of electrocardiogram (ECG) acquired during sport activity is challenging because acquisition conditions often lead to record ECGs with low signal to noise ratio (SNR). The initial issue of automatic ECG analysis is the identification of R peaks. R peaks are fundamental for the estimation of heart rate, which is the primary clinical parameter used by athletes for athletic performance evaluation. Thus, the aim of this research is to propose an R-peak detection algorithm for ECGs acquired during sport activity by portable and wearable sensors dealing with low SNR. The algorithm is based on a noise assisted data analysis method: Ensemble Empirical Mode Decomposition method (EEMD). Localization of R peaks is primarily performed on the first intrinsic mode function extracted by the EEMD. The algorithm was tested on ‘Run on indoor treadmill’ dataset from Physionet. ECGs were acquired during running/light jogging on an indoor treadmill and present a low SNR (1±7 dB). The developed EEMD-based algorithm showed good performances in terms of positive predicted value (91.08%), sensitivity (92.76%), false discovery rate (8.92), false negative rate (7.24%), cumulative statistical index (83.84%) and mean R-peak position error 1.10 [0.46;1.46]ms. EEMD-based algorithm performs efficiently also in computing heart rate. In conclusion, the developed R-peak detection EEMD-based algorithm showed good level of performances even working on low-SNR ECG acquired during sport activity by portable sensors.